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M. BITOT Xavier Project leader, Coexya

Jury
M. Michel CRUCIANU Professeur des universités, Cnam Président
Mme. Diane LARLUS Principal Research Scientist, Naver Labs Europe Rapporteuse
M. Yannis AVRITHIS Principal Investigator, IARAI Rapporteur
M. Matthieu CORD Professeur des universités, Sorbonne Université Examinateur
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Résumé

Cette thèse aborde la problématique de la recherche robuste d’images par apprentissage

profond. La recherche par le contenu d’images consiste à trouver des images visuellement simi-

laires à une image“requête”dans de grandes bases de données. Les approches par apprentissage

profond sont basées sur l’apprentissage de représentations des images afin de mesurer leur simi-

larité, par exemple, avec la distance euclidienne. La recherche d’images est notamment utilisée

dans les moteurs de recherche, tels qu’Acsepto, le moteur de recherche de logos de marques

déposées développé par Coexya. Cette thèse vise à améliorer les performances et la fiabilité des

systèmes de recherche d’images. À cette fin, nous explorons la robustesse dans l’apprentissage

profond selon trois perspectives.

Nous exposons d’abord les di�cultés qui se présentent lors de l’optimisation des métriques

d’évaluation utilisées en recherche d’images, telles que la Précision Moyenne (AP) et le rappel

à k, à savoir la non-di↵érentiabilité et la non-décomposabilité. Elles rendent ces métriques

di�cilement optimisables par descente de gradient stochastique. Il est ainsi nécessaire d’utiliser

des fonctions de coût de substitution pour entrâıner les réseaux de neurones profonds (DNN),

ce qui induit une disparité entre l’objectif d’entrâınement et les métriques d’évaluation. Pour

réduire cet écart, nous introduisons une famille de fonctions de coût di↵érentiables qui sont

des bornes supérieures des métriques d’évaluation usuelles et incluent un objectif explicite de

décomposabilité. Cette famille permet d’optimiser plusieurs métriques d’évaluation, telles que

l’AP, le rappel à k et le NDCG. Cette approche, appelée ROADMAP, surpasse les fonctions de

coût de l’état de l’art sur plusieurs bases de données de recherche d’images.

Ensuite, nous cherchons à réduire la gravité des erreurs commises par les systèmes de

recherche d’images basés apprentissage profonds. En e↵et, les réseaux de neurones, lorsqu’ils

ne sont pas contraints, ont tendance à commettre des erreurs sévères, qui sont di�cilement

compréhensibles par les humains. Ces erreurs graves peuvent réduire la confiance des utilisa-

teurs dans les moteurs de recherche. Nous proposons une solution en exploitant les relations

hiérarchiques entre les catégories d’images. En e↵et, les relations sémantiques peuvent servir

de proxy pour la façon dont les humains jugent la gravité d’une erreur. Ces relations sont
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RESUME

intégrées dans une nouvelle extension de l’AP au cadre hiérarchique, H-AP. Nous définissons

ensuite HAPPIER, une fonction de coût di↵érentiable optimisant H-AP, construite similaire-

ment à ROADMAP. Nous montrons quantitativement et qualitativement que les réseaux de

neurones entrâınés avec HAPPIER produisent des classements avec des erreurs moins sévères

et se rapprochent davantage de la sémantique des ensembles de données.

Enfin, nous abordons les capacités de détection d’exemples hors distribution (OOD) des

DNN. Il s’agit de détecter des données qui ne devraient pas être traitées par les DNN, par

exemple, des images de catégories qui n’ont pas été vues pendant l’entrâınement. Nous intro-

duisons HEAT, une nouvelle méthode de détection d’OOD. HEAT est une méthode post-hoc,

ce qui la rend applicable à potentiellement toutes les architectures pré-entrâınées, sans nécessité

de les a�ner. Nous proposons d’utiliser les modèles à énergie pour ra�ner les méthodes de la

littérature, en apprenant un terme résiduel pour améliorer leur expressivité. Nous exploitons

ensuite leurs di↵érents biais de modélisation complémentaires en utilisant la composition de

fonctions d’énergies pour améliorer les capacités de détection d’OOD des DNN. Nous démon-

trons quantitativement l’intérêt de ces deux composantes sur trois jeux de données, pour lesquels

HEAT surpasse les méthodes de l’état de l’art en détection d’OOD.

Mots-clés : Apprentissage profond, Vision par ordinateur, Recherche par image, Robustesse.
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Abstract

This thesis tackles robust image retrieval with deep learning. Image retrieval consists in

querying large databases to find images visually similar to a query image. Deep learning ap-

proaches involve learning representations to measure how are similar images are, e.g. using the

Euclidean distance. Image retrieval is notably used in search engines, for instance trademarked

logo retrieval with Coexya’s Acsepto. The motivation of this thesis is to improve image retrieval

systems performances and reliability. To this end, we explore in this thesis the robustness of

deep learning from three perspectives.

We first expose the shortcomings that arise when optimizing for the evaluation metrics

typically used in image retrieval, e.g. Average Precision (AP) and recall at k, namely non-

di↵erentiability and non-decomposability. These shortcomings make these metrics not directly

amenable to stochastic gradient descent. This forces the use of surrogate losses to train deep

neural networks (DNNs), which leads to a discrepancy between the training objective and the

evaluation metrics of image retrieval systems. To reduce this gap, we introduce a family of

di↵erentiable rank-based losses that are upper bounds of the evaluation metrics and include

an objective to explicitly reduce non-decomposability. We show that this framework works

for several evaluation metrics, e.g. AP, recall and NDCG. Using ROADMAP to optimize

AP compares favorably to other state-of-the-art surrogate losses on several image retrieval

benchmarks.

Then, we aim to reduce the severity of the mistakes from deep image retrieval systems.

Indeed, DNNs, when not controlled, tend to make severe mistakes that do not align well with

human understanding. These severe errors can reduce the trust of users in search engines. We

address this issue by leveraging hierarchical relations between categories. Indeed, hierarchical

relations can serve as a proxy for how humans would judge the severity of a mistake. These

relations are integrated in a novel extension of the AP to the hierarchical setting, H-AP.

From this metric we derive HAPPIER, a di↵erentiable surrogate to H-AP built upon the

ROADMAP framework. We show quantitatively and qualitatively that DNNs trained with

HAPPIER produce ranking with less severe mistakes and closer align to the semantics of the
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ABSTRACT

datasets.

Finally, we address the out-of-distribution (OOD) detection capabilities of DNNs. It consists

in detecting inputs that should not be processed by DNNs, e.g. images from categories that were

not seen during training. We introduce HEAT, a new OOD detection method. HEAT is a post-

hoc method, which makes it applicable to virtually any pre-trained backbones, without the need

to fine-tune them. We propose to use the principled energy-based model framework to correct

methods from the literature, by learning a residual term to improve their expressiveness. We

then leverage their di↵erent modeling biases using energy function composition to improve OOD

detection capabilities of DNNs. We show in experiments the interest of the two components of

HEAT. Furthermore, we show that HEAT outperforms state-of-the-art OOD detection methods.

Keywords: Deep learning, Computer vision, Image retrieval, Robustness.
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1.1. AI SUMMER.

1.1 AI summer.

In recent years, the field of artificial intelligence (AI) has witnessed a remarkable trans-

formation, propelled by the renewal of deep learning (DL) [1]. It has revolutionized numerous

field. Generative AI has found tremendous success with Large Language Models (LLM), such as

ChatGPT 3 & 4 [2], [3] (Fig. 1.1f), Llama 1 & 2 [4], [5], and image generation, e.g. text-to-image

generation with Stable Di↵usion [6] (Fig. 1.1e) or DALL-E [7]. It has changed how we represent

multimedia content, such as images with DINOv2 [8], MAE [9], SAM [10] (Fig. 1.1c), audio

with Whisper [11] (Fig. 1.1b), and more recently multi-modal data with CLIP [12] (Fig. 1.1a),

ImageBind [13] and Gemini [14]. Its application in reinforcement learning has allowed to master

the game of Go with AlphaGo [15] subsequently defeating its world champion (Fig. 1.1d), and

has allowed in robotics to beat racing drones champions [16], or for autonomous transportation

such as driving [17]. Its application are diverse, and it was successfully applied to physics re-

search, e.g. weather forecasting with GraphCast [18] or the stabilization of plasma in nuclear

fusion [19]. It has had a tremendous impact on biology with the release of AlphaFold [20], and

is at the core of ventures such as Altos lab that uses AI to rejuvenate cells with the Shinya

Yamanaka reaction [21]. Another prolific area is the application of AI to medicine, e.g. faster

IRM reconstruction [22], CT scan organ segmentation [23], or drug discovery [24].

(d) Mastering the game of Go with AlphaGo

(a) The Vision Language model CLIP (b) Speech recognition with Whisper (c) Image segmentation with SAM

(e) Text to image generation with Stable Diffusion (f) The AI chatbot ChatGPT

The loch ness monster swimming in the Seine in Paris

Figure 1.1: Examples of deep learning research with high impact on the AI community and on
a general audience. ChatGPT (f) has had 1.7 billion visit in October 2023*.

* source: https://explodingtopics.com/blog/chatgpt-users
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1.1. AI SUMMER.

In major fields of AI, such as computer vision, natural language processing or speech recog-

nition, deep learning has become the dominant, if not the only, paradigm. This dominance of

deep learning stems from two major factors 1) the wide availability of large datasets such as

ImageNet [25], COCO [26], ADE20K [27], Google Landmark dataset v2 [28] or iNaturalist [29]

and in recent years the collection of massive datasets orders of magnitude bigger than previous

ones, such as JFM [30] (private), LAION-5B [31], LVD-142M [8] 2) the ever-increasing amount

of compute available to industrial labs and researchers, with dedicated research on developing

the best chips [32], [33]. Both these factors allow training bigger models for longer and on very

diverse data.

By continually increasing datasets size and compute, deep learning enters the era of founda-

tion models [34]. These models that have been trained on large amounts of data, e.g. 2 billion

text-image pairs for OpenClip [35] or 2 trillion tokens for Llama 2 [5]. Because of the magni-

tude of their training set, these models are flaunted to have “seen the world”, i.e. they have

seen diverse data and have a broad comprehension of the world. These generalist models can

be used in a “zero-shot” manner, i.e. without necessitating training, on a wide range of tasks.

They are build to have a general understanding of the data without being expert on specific

tasks. Thus, because of their generality, they can under-perform vs. expert models on specific

tasks or datasets, for instance CLIP in image retrieval [36], or SAM on medical images [37].

Although these models are promised to be the base of numerous AI systems, adapting them

remains the most e↵ective for specific tasks.

Modern computer vision. In computer vision, the use of deep learning redefines how images

are processed and represented. First successful applications of deep learning for computer vision

were based on modern convolutional neural networks [40], before becoming virtually the base

of all computer vision methods after its success in large scale settings with MCDNN [41] and

the famous AlexNet [42] that won the ILSVRC 2012 challenge [43]. Architectures then evolved

with the well-known VGG [44] and ResNets [45]. Recently vision transformers, ViTs [46],

[47], have been developed in computer vision by adapting the Transformer [48] from natural

language processing. The success of deep learning for computer vision notably comes from the

fact that it learns representation, the “embeddings” or “deep features”, rather than relying on

hand-crafted “expert features” such as SIFT [49]. Indeed, expert features have been designed

by researchers using notions of signal processing and our understanding of important aspects of

images, e.g. color gradients. These hand-crafted features mostly grasp low level cues, and thus

they may lack some expressiveness for semantic content, where deep features are data-driven

and can represent di↵erent level of abstraction to tackle the tasks at hand. Embeddings are

3



1.1. AI SUMMER.

(a) Image taken from [38]. Example of di↵erent computer vision tasks solved using deep neural
networks.

What is the model of this vehicle?

Bugatti Veyron
The Bugatti Veyron EB 16.4 is a 
mid-engine sports car, designed 
and developed in Germany by 
the Volkswagen Group and …

What is this building called?

Skanderbeg Museum
The National History Museum "Gjergj 
Kastrioti Skënderbeu" (Albanian: 
Muzeu Historik Kombëtar ), also known 
as the Skanderbeg Museum…

What piece of equipment is placed 
on the animal in the image?Who manufactured the plane?

Bridle
A bridle is a piece of equipment used 
to direct a horse. As defined in the 
Oxford English Dictionary, the "bridle" 
includes both the headstall that…

Mcdonnell douglas 
McDonnell Douglas was a major 
American aerospace 
manufacturing corporation and 
defense contractor formed by …

Context Image

 Input
O

utput

Knowledge Base
(Wikipedia)

Text Query

Output Entity
(Wikipedia Entity)

OVEN Models

(b) Image taken from [39]. Visual question answering system based on image retrieval.

Figure 1.2: Illustration of the applications of DNN for computer vision.

high dimensional vectors that can represent complex images in a compact manner and allow

comparison using simple tools such as the Euclidean distance. These complex representations

have enabled deep learning systems to perform numerous tasks such as image classification [44],

[45], [50], object detection [51]–[53], image segmentation [10], [54], [55], which are illustrated

on Fig. 1.2a, or visual question answering [39], [56], illustrated on Fig. 1.2b, etc.
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1.2. CONTEXT AND MOTIVATIONS.

1.2 Context and motivations.

This thesis stems from the collaboration between Cnam and Coexya. Coexya1 is an indus-

trial group that, among other, edits software solutions dedicated to intellectual property (IP)

management. One of them being Acsepto2: a software suite for trademark search and watch,

used in 16 Intellectual Property O�ces worldwide. One of the Acsepto search engines is ded-

icated trademark logos (TMs) search. Indeed, when a person, organization or company wants

to protect a trademark logo, it has to submit a trademark application to the country’s IP o�ce,

such as the INPI3 in France, to ensure that the candidate TM is not confusingly similar to an

already existing logo. Because of the magnitude of their database, e.g. 3.2M registered TMs in

France, IP o�ces have had to rely on the automation of the search process. This search process

is illustrated by Fig. 1.3. Given a logo, referred to as a “query”, that an applicant would like

to register, e.g. the ICML logo here, Acsepto retrieves a list of logos in a client’s database that

are the most similar to the query.

Query:

Top-24 retrieved images:

Figure 1.3: Example of a query in Coexya’s Acsepto with the ICML logo. Contrarily to the
standard image retrieval academic setting, for most trademark logo applications, there are not
necessarily positive image results. Some logos are more relevant than others.

1Coexya’s website: https://www.coexya.eu/
2Acsepto’s description: Fiches-produits-Acsepto.pdf
3INPI’s website: https://www.inpi.fr/
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1.2. CONTEXT AND MOTIVATIONS.

Figure 1.4: The pixel-wise L2 distance between an image and a translated version of itself is
greater than with a completely di↵erent image. This illustrates the necessity to design more
powerful representations to compare images. (Note that for the content, the inequality also
holds true: 5 ≠ 5 = 0 > 5 ≠ 7 = ≠2).

Querying a database with an image is a task of computer vision referred to as content-based

image retrieval (CBIR). CBIR is based on image representation. It consists in building repre-

sentations of images that enable their comparisons. Indeed, comparing two images based on

their raw pixels, e.g. doing a L2 distance pixel-wise, is not accurate and is very sensitive to small

variations of an image. This is illustrated on Fig. 1.4, by translating an image of the MNIST

dataset [57] by few pixels the L2 distance becomes higher than with another image. To this end,

Acsepto has been based in previous versions on handcrafted and engineered representations of

images; its final version before deep learning was based on a mixture of several algorithms,

including 2D-Fourier transform [58], 2D-Zernike polynomials [59], HOG features [60], SURF

features [61], FCTH features [62] and an in-house algorithm. The representations derived from

these di↵erent algorithms allowed to focus on di↵erent aspect of images, e.g. the shapes or

color gradients.

Coexya has since adopted deep features following the rise of deep learning in computer vision.

One of the strength of DNN is that they are able to learn representation of the images based

on data: we say that DNN are “data driven”. This allows creating deep representations spaces

where distances are perceptual. Meaning that two images that are visually or semantically

similar will be close in the Euclidean distance sense. Coexya’s first deep models rely on fine-

tuning ImageNet pre-trained DNN, e.g. the ResNet-50 [45], on their internal database annotated

with the Vienna classification4, a standardized multi-label classification of trademarked logos

established by the World Intellectual Property Organization5. The deep features extracted

from these fine-tuned DNN are subsequently used to compare trademark logos with one another.

Fine-tuning is important as it allows adapting the model to a di↵erent domain, e.g. trademarked

logos for Coexya. It also allows learning representations that can distinguish subtle di↵erences in

4The Vienna classification: https://www.wipo.int/classifications/vienna/en/index.html
5WIPO: https://www.wipo.int/portal/en/index.html
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1.2. CONTEXT AND MOTIVATIONS.

images, indeed datasets in image retrieval are “fine-grained”, which is not the case for generalist

datasets such as ImageNet. With this collaboration, Coexya sought to improve their models

used in their Acsepto software, by improving their predictive performances and making them

more reliable.

This context leads use to address the notion of robustness of DNN under three di↵erent

perspectives:

1. Challenge 1: Robustness in optimization, where we design theoretically sound training

loss, leading to better performances on the evaluation metrics.

2. Challenge 2: Robustness of the learned rankings, to mitigate mistake severity and ensure

alignment of the ranking with human preferences by relying on hierarchical annotations.

3. Challenge 3: Robustness of the models, by detecting out-of-distribution images using

data-driven models to estimate the density of the training images.

1.2.1 Challenge 1: Optimization of non-smooth and non-decomposable met-
rics.

In order to learn representations, DNN are trained on a dataset by minimizing a loss function.

The gradients are computed from outputs of DNN. Using the back-propagation algorithm [63], a

gradient is computed for each layer of the DNN. The weights are then updated using stochastic

gradient descent (SGD). This training paradigm relies on loss functions that are di↵erentiable,

i.e. the gradient of the loss with respect to the output of the DNN can be computed and is

informative. In order to have a DNN that is trained for a specific task, the best case scenario

is to be able to optimize the evaluation metrics during training. For instance, this is possible

for the standard regression metrics: the mean squared error (MSE). However, for several losses

this is not possible, e.g. for the well known 0/1 loss used in classification, illustrated in black

on Fig. 1.5a. Indeed, it is a step function and its gradients are either 0 or undefined, making

them uninformative for SGD. It thus requires the use of a “surrogate” loss that is di↵erentiable,

such as the hinge loss or the cross-entropy, which is the loss used for classification in practice.

These losses are illustrated on Fig. 1.5a.

Image retrieval systems are evaluated with ranking-based metrics, e.g. average precision

(AP), recall at k (R@k) or normalize discounted cumulative gain (NDCG). These metrics are

used because image retrieval is a strongly unbalanced task, i.e. there are many more negatives

than positives. Indeed, given a query image, most of the images in the database will be

7



1.2. CONTEXT AND MOTIVATIONS.

irrelevant. For instance, on Fig. 1.2b when querying the image of the airplane most images

in the database are not a “McDonnell Douglas”, thus are irrelevant. These metrics are based on

the ranking operator, which can be derived from step functions, as will be detailed in Sec. 2.2.

As they are based on step functions, they su↵er from the same issues as the 0/1 loss: they are not

di↵erentiable, thus fine-tuning image retrieval models requires designing appropriate surrogate

losses. This issue has been long studied, and has been addressed by either using coarse upper

bounds, e.g. the contrastive loss [64], triplet losses [65], proxy losses [66] or using approximations

of the rank which allows fine approximation of the target metrics [67]–[70]. For instance, Coexya

relied on classification based training which mismatches image retrieval evaluation metrics,

leading to suboptimal performances. Designing surrogate losses that correctly approximate the

evaluation metrics, while keeping important robustness properties such as being upper bounds,

is a challenging problem.

(a) In order to optimize the 0/1 loss (in blue), a
surrogate loss is needed, e.g. the logistic or cross-
entropy loss in black.*

(b) Image retrieval evaluation metrics, e.g. AP,
are not decomposable. The average AP esti-
mated on the blue batches is 0.78, whereas the
true global values in yellow is 0.68.

Figure 1.5: Stochastic gradient descent relies on loss functions that are di↵erentiable Fig. 1.5a,
and that are decomposable, which is not the case for AP Fig. 1.5b.

*Image taken from www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote10.html

Furthermore, these metrics are “list-wise”, i.e. the value of the metric for a given query

depends on other examples. Therefore, they are not linearly separable between examples. This

makes them “non-decomposable”. Their values estimated on subset or mini-batches of data

are biased. This is illustrated on Fig. 1.5b, where the average of the AP on each batch (from

second to last rows) is greater than the global AP (top row). As mentioned previously DNN

are optimized using SGD which is used in practice for both computational and performance

reasons. Other losses, e.g. the cross entropy, do not face this issue and can be estimated using
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mini-batches of data. Non-decomposability is also an issue for other metrics, such as the Dice

score [71], [72]. While non-decomposability is a known issue, it has been less studied than the

non-di↵erentiability issue. Approaches that tackle non-decomposability using ad hoc and brute

force methods, e.g. increasing the batch size at the expense of computational e�ciency in [67]

or storing previous batches [68], [73].

1.2.2 Challenge 2: Brittleness of DNN outputs and mistake severity.

Query:

Brittle model
Severe mistake

Mistake aware model
Less severe

mistake

Figure 1.6: For a given query, we illustrate two retrieved results. The top makes an error that
is more severe than the bottom one.

Whereas DNN are very powerful to represent images and perform specific tasks, they can

be surprisingly brittle to di↵erent factors and can have unstable outputs. One notorious aspect

of their brittleness and instability is the so-called adversarial attacks [74], where the output of

DNN can change drastically while the input changes slightly. Another instability is that DNN

have little control over the severity of the errors they commit in terms of human understanding.

This was notably observed in [75], where they show on ImageNet classification [43] that while

predictive performances from AlexNet [42] to the more evolved ResNet-50 [45] have increased,

the severity of the errors have not lowered. This can be in part explained by“shortcut learning”

of DNN [76]. Indeed, DNN tend to learn tasks by learning shortcuts, e.g. looking at the

background in image classification rather than the primary object. This can implicate that

rather than learning a semantic of images to recognize, they rely on features unrecognizable

to humans, leading to severe mistakes when they commit some. Similarly, CBIR systems can

exhibit failure cases, where they commit really severe mistakes when they mistakenly retrieve

some false positives. This is illustrated on Fig. 1.6, where, given an “Apple” logo, two models

can make errors that are more or less severe. Contrarily to previous handcrafted features

9
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used to represent images, e.g. SIFT [49], HOG [60] or VLAD [77], DNN representations lack

interpretability. This issue make the comprehension of these instabilities harder to understand

and fix in practice.

Query:

Group 1 Group 2 Group 3 Group 4

Database samples

Figure 1.7: For a given query (e.g. the Apple logo) there are several groups that more or less
relevant: old Apple logos, logos depicting apples, fruits, and finally logos that do not share any
similarity. Note that Apple has engaged lawsuits for logos in groups 2 and 3*.

* sources: www.huffpost.com/entry/apple-sues-woolworths-ove_n_309450
www.techspot.com/news/99131-apple-wants-trademark-images-apples.html

www.wired.com/2008/10/apple-takes-on/

The definition of mistake severity is challenging. It is connected with the human preferences

and understanding of the tasks. Because “human preferences” are di�cult to define in practice,

an interesting area of research uses hierarchical relations between image labels as a proxy.

For the well-known ImageNet dataset, the mistake severity can be derived from hierarchical

relations of the WordNet [78] syntactical database. In information retrieval researchers use

“graded relevances” that modelizes the importance of the retrieved instances for a given query.

Subsequently, using them in graded metrics such as NDCG [79] or a graded AP [80]. Similarly,

di↵erent levels of relevance can be created for CBIR of trademark logos, this is illustrated

on Fig. 1.7, for a given query retrieved logos can be more or less relevant. This task was also

addressed using surrogate losses in [81], [82]. Reducing the mistake severity is important for

search engines, including Coexya’s Acsepto, in order to convince the users to use them and

build trust.
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1.2.3 Challenge 3: Out-of-distribution sample detection.

Although DNN predictive performances have increased, as discussed previously, detecting

when samples are out-of-distribution (OOD) remains a challenging task. The task of OOD

detection is a challenging direction and has been extensively studied. OOD detection is another

important challenge to make DNN more robust in their predictions. It gives the ability to

detect whether they should process an image or not. In critical applications it is important

that a DNN knows when it does not know, e.g. in medicine, defense or in autonomous driving,

a system should give back the control to a human decider if it does not know what to do.

OOD detection is also a challenging research direction for CBIR. It is for instance interesting

for Coexya. Indeed, one industrial advantage of Coexya is its private databases of trademark

logos. In order to remain competitive, one direction might be to scrape the web or create

subset of very large dataset [31] for new logos or di↵erent training sets. This requires being

able to detect whether an image is of a logo or not. This is illustrated on Fig. 1.8, a model

has been trained on the ID training set, and must detect at inference time whether an image is

“in-distribution”, i.e. it comes from the ID test set, or “out-of-distribution”, i.e. it is an OOD

data.

ID training set ID test set OOD data

Figure 1.8: Trademark logo detection. A model must decide whether images are in-distribution
(ID), e.g. from the METU dataset [83], or out-of-distribution (OOD), e.g. from the ImageNet
dataset [43].

The di�culty of OOD detection notably comes from the overconfidence of deep models.

This was identified in [84], where the authors show how deep models su↵er from overconfidence.

For instance, in classification, this means that DNN will give a strong probability to a wrong

class. This makes näıve approach, such as the well-known maximum softmax probability (MSP)

of [85], fail in some cases. Indeed, MSP uses the maximum probability of a DNN as a confidence

measurement, which is not su�cient in practice. There have been several attempts at solving

OOD detection. Authors of [86], [87] tried to enforce OOD detection by integrating OOD

samples in the training dataset. Other methods relied on autoencoders to access a likelihood
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on an image [88]. State-of-the art methods try to estimate the density of the ID training set of

DNN, e.g. [89] approximate the ID density using a Gaussian Mixture Model or, more recently,

authors of [90] approximate it using the k-nearest neighbors density. There has been a shift

of paradigm in the OOD detection literature, following the recent advent of very large o↵-

the-shelves models that have strong predictive performances. Thus, recent methods for OOD

detection follow the post-hoc paradigm, where they leverage pre-trained neural networks [89],

[91], [92].

1.3 Summary and contributions.

In this thesis, we address several aspects of the robustness of deep neural network. Specif-

ically, we introduce a method for the robust optimization of ranking metrics that are used in

image retrieval, by tackling both the issues of non-di↵erentiability and non-decomposability

(Chapter 3). We show that using the hierarchical relations between labels, we can train more

robust neural networks with respect to their errors in Chapter 4. We also investigate post-hoc

robustness of DNN with their out-of-distribution detection performances and how to boost them

using energy-based models in Chapter 5.

Outline. In regards with the challenges mentioned above, our contributions are the following:

• Chapter 3: Optimization of Ranking Losses for Image retrieval.

In this chapter, we address the two limitations of optimizing ranking-based metrics identified in

Challenge 1: non-di↵erentiability and non-decomposability. We define a new training framework

that tackles both issues. It uses an approximation of the ranking function, SupRank, to provide

a smooth and upper-bound surrogate losses. SupRank is an accurate approximation of the

rank, and has sound mathematical properties and experimental performances. We also show

the theoretical advantages that SupRank has compared to the smooth approximations of [69],

[70]. We optimize a second loss function during training, to enforce the decomposability of

ranking losses during mini-batch training. It has a small computational overhead, and make

ranking optimization feasible in small batch settings. We show in a theoretical analysis how this

additional objective helps the decomposability of ranking loss optimization. This framework is

general and can be applied to numerous ranking losses. In this first chapter we concentrate on

the standard image retrieval setting and apply this framework to two ranking-based metrics:

average precision and recall at k to optimize DNN for image retrieval. We show in extensive
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experimental validations the interest of our framework. We first show that it compares favorably

against recent methods from the literature that optimize ranking-based metrics. We show that

our framework allows the optimization of ranking-based metrics in small batch settings. We

then show that our framework is robust to hyperparameters. Finally, we compare our method

against state-of-the-art methods from the literature and show it outperforms competitions on

several datasets, including small to large scale, and validate our method on one of Coexya’s

internal datasets.

• Chapter 4: Hierarchical Image Retrieval for Robust Ranking.

In this chapter, we question the definition of the similarity used in image retrieval in order

to address the brittleness of DNN with respect to the severity of their errors. We expose the

limitations of the standard binary similarity commonly used in image retrieval by looking at

the model’s robustness when making mistakes. To mitigate this brittleness of mistake severity,

we propose to use hierarchical relations between labels to define a more rich definition of the

similarity between two images. To integrate this similarity during training and for evaluation,

we introduce an extension of the average precision, the hierarchical average precision or H-AP.

To showcase the interest of using hierarchical relations, we optimize two di↵erent hierarchical

metrics using the framework of Chapter 3: H-AP with HAPPIER, and NDCG with ROD-NDCG.

Using this framework allows us to have more robust training than approximations used in

information retrieval [79], [80]. Furthermore, optimizing surrogate of evaluation metrics lead to

better performances than other surrogate losses used in hierarchical image retrieval such as [81],

[82]. We then discuss the assumption we made of having access to hierarchical labels. We show

how to annotate in practice image retrieval datasets with hierarchical labels. We use a semi-

automatic pipeline to extend a well-known landmarks retrieval dataset, Google-Landmarks

v2 [28], with hierarchical labels. We show in experimental validation that both HAPPIER

and ROD-NDCG i) are on par with state-of-the-art methods for standard image retrieval ii)

outperform by a large margin standard image retrieval methods on hierarchical metrics, iii)

outperform other hierarchical methods on hierarchical metrics and standard image retrieval.

Our results hold for six hierarchical datasets of the literature and our hierarchical GLDv2. We

also show the interest of HAPPIER for logo retrieval on two of Coexya’s internal datasets. We

conduct ablation studies of our framework to show its robustness to hyperparameters. Finally,

we qualitatively show that HAPPIER creates an embedding space that is better organized than

non-hierarchical methods, and qualitatively show the lower mistake severity of HAPPIER vs.

non-hierarchical methods.

• Chapter 5: Post-hoc out-of-distribution detection.

13



1.3. SUMMARY AND CONTRIBUTIONS.

In this chapter, we study another aspect of DNN robustness: post-hoc out-of-distribution (OOD)

detection, as described in Challenge 3. We leverage the energy-based models (EBM) frame-

work [93] to introduce a new method for post-hoc OOD detection: HEAT. It is based on two

components: residual learning and composition of energy functions. We first use EBMs to

learn a residual function for di↵erent methods of the OOD detection literature. Indeed, several

methods of the literature are based on approximation of the density of the training dataset, e.g.

[91] uses a Gaussian mixture model to approximate the ID density or [94] uses an energy score

derived from the output logits of a DNN. However, because of their strong prior biases, these

methods lack expressiveness to correctly approximate the ID distribution. Learning a residual

term with an EBM allows more expressiveness. Another aspect of the di↵erent modeling biases

of these methods is that they will be able to detect di↵erent type of OOD samples. We show

that using the energy function composition, we are able to combine e↵ectively several types of

corrected prior OOD scorers to improve overall OOD detection performances. Finally, HEAT is

a post-hoc methods, which allows it to be used on virtually any o↵-the-shelf deep model with

strong predictive performances. We focus on image classification as it is a standard benchmark

in the OOD detection literature. In our experiments, we show how both the components of

HEAT improve OOD detection performances. We compare HEAT to state-of-the-art post-hoc

OOD detection on two standard benchmarks CIFAR-10 and CIFAR-100 and on the large scale

ImageNet. We also show that HEAT works with several architectures, including CNNs and

Vision Transformers. Finally, we show that HEAT is robust to low data regimes, and with

respect to its hyperparameters.
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Chapter 2

Related work

In this chapter we first discuss major trends in image retrieval before giving a general

overview of the three directions identified in Chapter 1, i) optimization in image retrieval,

ii) hierarchical learning for mistake severity, and iii) post-hoc out-of-distribution detection.

In Sec. 2.1 we give an overview of the evolution of image retrieval, from handcrafted features

to the use of deep neural networks and advanced pipelines. We will then discuss in Sec. 2.2

modern training schemes with proxy losses developed for image retrieval and issues arising

from mini-batch optimization in deep learning. In Sec. 2.3 we will present the evolution of

hierarchical classification in computer vision, draw inspiration from the information retrieval

community, before reviewing the hierarchical image retrieval literature. Finally, in Sec. 2.4

we will discuss out-of-distribution (OOD) detection and its current post-hoc paradigm, before

discussing energy-based models and our motivation for their use in OOD detection.
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2.1. TRENDS IN IMAGE RETRIEVAL.

2.1 Trends in image retrieval.

Image retrieval is a subdomain or task of computer vision. It refers to the process of retriev-

ing relevant images from a large collection based on a query image or a textual description [99].

In this thesis we concentrate on image queries, i.e. content based image retrieval, and do not

discuss text to image retrieval [100], [101] or composed image retrieval [102], [103]. Image-

to-image retrieval is illustrated on Fig. 2.1, given a query image of the “Moulin Rouge”, the

image retrieval systems should find in database images that are similar, i.e. other photos of the

“Moulin Rouge”. Image retrieval can be used in e.g. search engines such as Coexya’s Acsepto,

in re-identification of vehicles [104] or in visual question answering systems [39], [56]. Among

the di�culties of image retrieval is that the datasets are fine-grained, this means that the vi-

sual di↵erence between similar and dissimilar images are hard to distinguish. Furthermore, the

representation of images in image retrieval needs to be invariant to the angle, scale and lighting

settings at which the pictures are taken. This is illustrated on Fig. 2.1, where images of the

“Moulin Rouge” are taken from the right or left side, from up-close or far away, and during

night and day.

DB

CNN

online

offline

Figure 2.1: In green, the query is an image of the “Moulin Rouge”. The goal of image retrieval
is to find images similar to the query, i.e. other images of the Moulin Rouge, in the database.
Images are then ordered from most to least similar, e.g. by decreasing cosine similarity between
the vectorial representations of the query image and images in the database.
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2.1.1 Background in image retrieval.

Historically, image retrieval systems heavily relied on handcrafted features, such as SIFT

(Scale-Invariant Feature Transform) [49], [105] or HOG (Histogram of Oriented Gradients) [60].

First pipelines typically involved several steps.

keypoint detectors, keypoint descriptors, and clustering and
classification algorithms [8, 9, 5, 18, 23, 22]. In compari-
son, this paper focuses on the representation choices of the
visual-word features, which are critical to the classification
performance but yet to be thoroughly studied. By evaluat-
ing various representation choices, we intend to answer the
question of what visual-word representation choices (w.r.t
dimension, weighting, selection, etc) are likely to produce
the best classification performance in terms of accuracy and
e�ciency.

We evaluate the image classification performance based on
various visual-word representations generated by text cate-
gorization techniques on two benchmark corpora, TRECVID
and PASCAL. The experiments lead to the following impor-
tant observations: (1) the size of an e�ective visual-word
vocabulary varies from thousands to tens of thousands; (2)
binary visual-word features are as e�ective as tf or tf-idf
weighted features; (3) using selection criteria such as chi-
square and mutual information, half of the visual words in
the vocabulary can be eliminated with minimum loss of clas-
sification performance; (4) frequent visual words are usually
very informative and must not be removed; (5) the spatial
information of keypoints is helpful under small vocabular-
ies. These observations are critical to designing the most
e�ective visual-word representation for image classification
and other related tasks. We also study the performance ob-
tained by combining visual-word features with conventional
color/texture features, from which we find the two types of
features are complementary.

In Section 2, we briefly review the existing works on image
classification and text categorization. We describe the gen-
eration of bag-of-visual-words image representation in Sec-
tion 3, and discuss the text categorization techniques for
generating various representations in Section 4. We intro-
duce the testing corpora and explore the distribution of vi-
sual words in Section 5. The experiment results and conclu-
sions are presented in Section 6 and Section 7, respectively.

2. RELATED WORK
Representing images by e�ective features is crucial to the

performance of image retrieval and classification. The most
popular image representation has been the low-level visual
features, which describes an image by the global distribu-
tion of color, texture, or other properties. Features like color
histograms and Gabor filters belong to this category. To in-
clude spatial information, an image is partitioned into either
rectangular regions or segments of objects and backgrounds,
and features computed from these regions/segments are con-
catenated into a single image feature vector. These conven-
tional image representations are in the form of real-valued
feature vectors, which is di�erent from the sparse term vec-
tors representing text documents.

Recently, the computer vision community has found key-
points to be an e�ective image representation for tasks vary-
ing from object recognition to image classification. Key-
points are salient image patches that contain rich local in-
formation of an image. They can be automatically detected
using various keypoint detectors, which are surveyed in [12]
and [22]. Keypoints are depicted by descriptors like SIFT
(scale-invariant feature transform) [11] and its variant PCA-
SIFT [7]. The keypoint descriptors are surveyed in [13].
Keypoint features can be used in their raw format for di-
rect image matching [23], or vector-quantized into a repre-

Figure 1: Generating visual-word image representa-
tion based on vector-quantized keypoint features

sentation analogous to the bag-of-words representation of
text documents. There have been works using this vector-
quantized keypoint feature, or bag-of-visual-word represen-
tation, for image classification [8, 9, 5, 18, 23, 22]. Our work
examines the e�ectiveness of various representation choices,
which is yet to be thoroughly studied in previous work.

Text categorization (TC) is a well studied area in IR. In
TC, documents are represented as “bags of words” after
stop-word removal and stemming. Each document is de-
scribed either by a binary vector indicating the presence or
absence of terms (e.g., [4]), or by a vector consisting of the
tf or tf-idf weights of the terms (e.g., [6], [20]). Yang et
al. [21] has studied the feature selection methods in TC,
and found that up to 98% of the unique terms in the vo-
cabulary can be eliminated without sacrificing classification
accuracy. Di�erent learning algorithms have been applied
to TC, including SVM, k-Nearest Neighbor, Naive Bayes,
Linear Least Square Fit, which are surveyed in [20] and [4].

3. BAG-OF-VISUAL-WORDS
Similar to terms in a text document, an image has local

interest points or keypoints defined as salient image patches
(small regions) that contain rich local information of the
image. Denoted by small crosses in the three images in Fig-
ure 1, keypoints are usually around the corners and edges of
image objects, such as the edges of the map and around peo-
ple’s faces. We use the Di�erence of Gaussian (DoG) detec-
tor [11] to automatically detect keypoints from images. The
detected keypoints are depicted using PCA-SIFT descriptor,
which is a 36-dimensional real-valued feature vector [7].

An image can be represented by a set of keypoint descrip-
tors, but this set varies in cardinality and lacks meaningful

Figure 2.2: Image taken from [106]. Image retrieval systems used to rely on several steps to
process images: keypoint detection, feature extraction, the creation of visual words by clustering
keypoint representations and indexation of images.
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1. Finding region of interests, or key-points, on images, e.g. using a�ne-invariant Hessian

regions [107].

2. Computing descriptors, e.g. 128D SIFT descriptors in [108].

3. Cluster the descriptors, or “quantized”, using K-means [109], [110] or hierarchical K-

means [111], to create a vocabulary of visual words.

4. Finally, index the images with their visual words and similarity is computed using L2

distance between visual words of two images [112]. A TF-IDF weighting scheme can also

be applied to weigh down recurring words [112].

This pipeline is illustrated on Fig. 2.2. Other methods, e.g. VLAD (Vector of Locally

Aggregated Descriptor) [77], worked on reducing the computational performance of image re-

trieval systems by aggregating local descriptors into a single global representation, which can

be subsequently used for nearest neighbor search in a database.

However, handcrafted features captured basic visual cues, e.g. color gradients, but lacked

the ability to capture high-level semantic information. By learning data-driven features that can

represent high level of semantic content, deep learning has dramatically changed the landscape

of image retrieval.

2.1.2 Advent of deep learning in image retrieval.

The advent of deep learning and convolutional neural networks (CNNs) [40], [45], and more

recently Transformers [46], has revolutionized the field of image retrieval. Deep neural networks,

have demonstrated remarkable prowess in learning complex and semantic representations of

images, enabling the automatic extraction of discriminative features directly from raw pixel

data. DNN learn global representation of images, thus removing the need for key-point detection

and directly creating descriptors representing the semantic content of the images. Because they

learn global representation, comparing two images can be simply done with cosine similarity or

Euclidean distance.

First attempts at using deep learning for image retrieval were based on neural networks

that have been trained on large datasets, e.g. AlexNet [42] trained for image classification on

ImageNet. Researchers tried to enforce some ideas of the previous pipelines, such as regions

of interest and geometric information, by changing the global aggregation from maximum or

average aggregation to more sophisticated aggregation [113]–[115]. For instance [113] proposed

R-MAC, i.e. regional maximum activation of convolutions, where instead of aggregating all the
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Figure 1: Query objects (left) and the corresponding localization in another image (right) are shown.
We visualize the patches that contribute the highest to the image similarity score. Displayed patches
correspond to the receptive field of CNN activations. Object localization is displayed in magenta,
while different colors are used for patches in correspondence.

This work revisits both filtering and re-ranking stages with CNN-based features. We make the three
following contributions.

• First, we propose a compact image representation derived from the convolutional layer
activations that encodes multiple image regions without the need to re-feed multiple inputs
to the network, in spirit of recent Fast-RCNN (Girshick, 2015) and Faster-RCNN (Ren
et al., 2015) methods but here targeting particular object retrieval. The underlying primitive
representation is used in all stages (initial retrieval and re-ranking).

• Second, we employ the generalized mean (Dollár et al., 2009) to enable the use of integral
images along with max-pooling. This efficient method is exploited for particular object
localization (see Figure 1) directly in the 2D maps of CNN activations.

• Third, our localization approach is used for image re-ranking and leads us to define a simple
yet effective query expansion method.

These approaches are complementary and, when combined, produce for the first time a system which
compete on the Oxford and Paris building benchmarks with state-of-the-art re-ranking approaches
based on local features. Our approach outperforms by a large margin previous methods based on
CNN, while being more efficient in practice.

2 RELATED WORK

CNN based representation. A typical CNN consists of several convolutional layers, followed by
fully connected layers and ends with a softmax layer producing a distribution over the training
classes. Instead of using this inherent classifier, one can consider the activations of the intermediate
layers to train a classifier. In particular, the activations of the fully connected layers have been shown
to be very effective and capable of adaptation to various domains (Oquab et al., 2014), such as scene
recognition (Donahue et al., 2013; Sicre & Jurie, 2015), object detection (Iandola et al., 2014), and
semantic segmentation (Girshick et al., 2014). In the case of image retrieval, fully connected layers
are used as global descriptors followed by dimensionality reduction (Babenko et al., 2014). They are
also employed as region descriptors to be compared to database descriptors (Razavian et al., 2014a)
or aggregated in a VLAD manner (Gong et al., 2014).

Recent works derive visual representations from the activations of the convolutional layers. This
is achieved either by stacking activations (Girshick et al., 2014) or by performing spatial max-
pooling (Azizpour et al., 2014) or sum-pooling (Babenko & Lempitsky, 2015) for each feature chan-
nel. According to Azizpour et al. (2014) such representation offers better generalization properties
for test data that are far from the source (training) data. Noticeably, higher performance in particular
object or scene retrieval is obtained by using convolutional layers rather than fully connected ones.
The very recent work of Babenko & Lempitsky (2015) shows that sum-pooling performs better than
max-pooling when the image representation is whitened. In addition to be a costly choice, we will
show that this is not optimal in our context of object localization (see Section 8). Finally, Kalantidis
et al. (2015) propose spatial and feature channel weighting that significantly improves performance.
Their approach is complementary to what we propose for the filtering and the re-ranking stage.

Recent examples utilize information from fully connected layers to perform generic object detec-
tion (Iandola et al., 2014; Papandreou et al., 2014). Such approaches are prohibitive for the re-
ranking purposes of large scale image retrieval. They have high computational cost and the inherent
features are not optimal for particular object matching.

2

Figure 2.3: Image taken from [113]. Query objects (left) and the corresponding localization
in another image (right) are shown. We visualize the patches that contribute the highest
to the image similarity score. Displayed patches correspond to the receptive field of CNN
activations. Object localization is displayed in magenta, while di↵erent colors are used for
patches in correspondence.

outputs of the convolution with the max-pooling (as done in AlexNet) they encode sub-regions

of the image using regional max-pooling. This is illustrated on Fig. 2.3 where authors of [113]

display for two queries which regions participate the most to the final similarity.

It was quickly shown that fine-tuning models worked best for image retrieval in [116], as it

allows to i) adapt to potentially a di↵erent domain and classes ii) learn discriminative features

as image retrieval datasets are fine-grained. Ensued an active research direction dedicated to

end-to-end learning [117] for image retrieval, with the use of contrastive loss [118], e.g. in

[64] that fine-tune neural networks on a dataset created using a structure-from-motion (SfM)

pipeline [119], [120]; triplet losses [121]; proxy-based losses [66], ranking losses [70], continuing

in some of the latest big conferences, e.g. ICML 2023 [122], ICCV 2023 [123]. The research of

a good training loss notably comes from drawbacks discussed in Chapter 1 of image retrieval

evaluation metrics, resulting in a di↵erence between the training loss and the evaluation metric,

which is further discussed in Sec. 2.2.

Another direction to improve image retrieval systems is by building dedicated architectures.

For instance, authors of [124]–[126] take advantage of hyperbolic embeddings [127]. Authors

of [128] introduce regional & scale GeM extending the well-known GeM-pooling [64] to create

global features that extract carefully the local features.

Other methods that perform well are based on the use of local features. R2D2 [129] learns

local descriptors and uses measures of repeatability and reliability to select the best local

descriptors. Authors of [130] use “super features” that are created using an attention module

on top of CNNs local features, that are an intermediate between global representations and

local features. Recently, authors of [131] adapted the transformer architectures to best take

advantage of their local features.
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2.1. TRENDS IN IMAGE RETRIEVAL.

2.1.3 Post-processing pipelines.

Other research directions are dedicated to improving image retrieval systems’ i) predictive

and ii) computational performances using post-processing strategies.

To improve predictive performances, there exists three standard post-processing strate-

gies [132]. i) (–-weighted) Query expansion [64], [133] refines the query embeddings using the

most similar images in the database. It is also included in losses to stabilize training [122],

[134]. ii) Re-ranking [108] is a two stage pipeline. With the first stage aiming at high recall, in

the top-k a lot of images should be similar to query image, the second stage aims at precision,

the first images should be similar to the query. The first stage often relies on global features

for e�ciency. The second stage is more compute intensive and often rely on local features

or learned key-point descriptors [135] and matching algorithms, e.g. RANSAC [136] or more

recently dedicated re-ranking architectures, e.g. 4D convolutions [137] or transformers [138],

[139]. Recent methods [128] perform re-ranking using global descriptors derived from query

expansion, which significantly lower the computational requirements of the re-ranking stage.

iii) Database-side feature augmentation [140], where database embeddings are refined using the

graph of positive images.

Figure 2.4: Image taken from [138]. Re-ranking is based on local features, [108] matches local
features using RANSAC [136]. The authors of [138] introduce a transformer [48] that learns
this matching.
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2.2. LOSSES IN IMAGE RETRIEVAL.

Another issue faced by image retrieval systems in practical settings is the computational

requirements of querying large databases. One of the most popular methods to lower the

computational cost of querying a database is using Product Quantization (PQ) [141]. PQ

works by dividing embeddings into blocks. Each block is quantized using a codebook, for

instance by clustering the blocks using K-means [109], [110]. PQ allows e�cient approximate

nearest neighbor search while boosting performances vs. standard quantization, as it reduces

quantization noise by quantizing smaller vectors. Another direction is using deep hashing [142]

where images are encoded in binary vectors. The Hamming distance is then used to compute

the similarity between vectors. These methods drastically reduce the cost of computing the

distance, but also the memory footprint of storing and loading the images representations.

In this thesis, we concentrate on the fine-tuning aspect of the image retrieval pipeline. We

stress that the research towards post-processing the rankings is orthogonal to ours. Our work

focuses on the global representation that are use for initial ranking, and could be used in a more

complex pipeline involving one or more components presented in this section. Specifically, we

build upon a long line of work that design the best proxy-loss for image retrieval, which is

discussed in the next section.

2.2 Losses in image retrieval.

Image retrieval is a very unbalanced task: most of the examples in a database are negative

wrt. a query image. In order to evaluate image retrieval systems, researchers use ranking-based

metrics that take into account this unbalance: e.g. average precision (AP), recall rate at k

(R@k), as discussed in Chapter 1.

The average precision is based on the recall and precision, that are defined below for a query

image q:

Recall(k) = # number of positive before k

|�+|
(2.1)

Precision(k) = # number of positive before k

k
(2.2)

with � the database and �+ the set of images similar to the query.

Note that in image retrieval, the metric often referred to as “Recall” is the recall rate and is

di↵erent from the usual recall:
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2.2. LOSSES IN IMAGE RETRIEVAL.

R@K = 1
|�|

ÿ

kœ�
1+(k), where 1+(k) =

Y
]

[
1 if a positive instance has a ranking smaller than k

0 otherwise
(2.3)

The average precision computes the precision at each recall step. It can also be written as

a function of the rank and rank+, which is the rank among the positive images.

AP =
ÿ

kœ�
(Recall(k) ≠ Recall(k ≠ 1)) · Precision(k) = 1

|�+|

ÿ

kœ�+

rank+(k)
rank(k) (2.4)

These metrics evaluate the quality of a ranking and are suited for image retrieval. They are

based on the ranking operator. Which can be defined as a sum of Heaviside step function [79],

H Fig. 2.8a:

rank(k) = 1 +
ÿ

jœ�
H(sj ≠ sk) (2.5)

This definition can be interpreted as counting the number of samples j that have a similarity

sj with the query image greater than the similarity sk of instance k.

These metrics have two main issues when dealing with stochastic gradient descent (SGD)

as in deep learning. 1) They are not optimizable directly through gradient descent. Indeed,

because of the Heaviside function this operator has gradient that are either null or undefined

(see Fig. 2.5), which we will sometimes refer to as “non-di↵erentiable”. This is illustrated

on Fig. 2.5. 2) they are not linearly decomposable with respect to training samples, we say that

they are “non-decomposable”. Indeed, for a non-decomposable metric M, its value on a dataset

� can not be expressed as a sum of metrics on individual examples, m(k), as in Eq. (2.6).

M(�) ”= 1
|�|

ÿ

kœ�
m(k) (2.6)

These drawbacks limit the use of ranking-based metrics in gradient based optimization

framework such as deep learning. In this section, we discuss methods to optimize such metrics

for image retrieval. Because these metrics are used in other domains, e.g. the average precision

is used in multi-label classification and object detection [51]. Furthermore, since the NDCG [143],

[144] used in information retrieval and the Dice score [71], [72] used in segmentation are also

not decomposable, addressing the issue of non-decomposability may also be applicable in other

contexts.
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2.2. LOSSES IN IMAGE RETRIEVAL.

Figure 2.5: When considering instance k, rank(k) is a piecewise constant function of sk, the
cosine similarity between k and the query. The gradient of rank(k) is thus 0, and undefined
where sk = sj.

Discussion on unsupervised image retrieval. In this section, we discussed losses in a super-

vised setting. Note that an emergent field is that of unsupervised fine-tuning of models for

image retrieval datasets. It allows adapting large models to specific domains of image retrieval

without the need for the costly annotation process of fine-grained datasets. STML [134] follows

recent trends of self-supervised literature [145]–[147] and uses a teacher-student framework to

optimize the relaxed contrastive loss [148] a soft-version of the contrastive loss used in e.g. [146],

[149]. On the other hand, [124], [150] take inspiration from the deep clustering papers [151],

[152] and train the models to classify correctly according to pseudo-labels. There have also

been some work that use both supervised losses and unsupervised ones, e.g. [153] that uses an

unsupervised loss to address the granularity di↵erence between training and evaluation.

2.2.1 Smooth Surrogate losses.

As ranking-based metrics used in image retrieval are not di↵erentiable, there has been a

focus on defining smooth surrogate losses to optimize DNN for image retrieval.

The image retrieval community has designed several families of proxy-losses to optimize

metrics such as AP and R@k. Losses based on tuplets, like pair losses [118], [155], [156], triplet

losses (TL) [65], [117], [157] (defined in Eq. (2.7)), or larger tuplets [158]–[160] learn local
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2.2. LOSSES IN IMAGE RETRIEVAL.

Figure 2.6: Image taken from [154]. The triplet loss optimize local ranking on triplets of
example (anchor, positive, negative) such that the distance between that anchor and negative
is superior to the one between anchor and positive.

comparison relations between instances (see Fig. 2.6).

TL(q, p, n) = max(cos(q, n) ≠ cos(q, p) ≠ m; 0), (2.7)

where

Y
_____]

_____[

q is a query image

p is an image similar to q

n is a negative image

m œ R is a “margin”

These metric learning methods optimize a coarse upper bound on AP, i.e. it is an upper

bound, however their values strongly exaggerate the values of AP, and need complex post-

processing and tricks to be e↵ective [65]. Methods using proxies [66], [161]–[164] have been

subsequently introduced to lower the computational complexity of tuplet based training. For

instance, for triplet losses, the number of triplets grows cubicly with the number of training

samples. These methods learn jointly a deep model and weight matrix that represent proxies

using a cross-entropy based loss. Proxies approximates the original data points by minimizing

the cross-entropy of data points belonging to the same category. However, these losses do not

directly optimize the target metrics.

Another family of losses that has been extensively studied is list-wise or ranking losses, that
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2.2. LOSSES IN IMAGE RETRIEVAL.

Figure 2.7: Image taken from [69]. Illustration of a ranking loss. It takes a list of positive and
negative and optimize such that the correct ranking is achieved on the whole list.

aims at optimizing directly the target metrics. One option for training with AP is to design

smooth upper bounds on the AP loss. First attempts were based on structural SVMs [165], [166].

Followed by extensions to speed up the “loss-augmented inference” [167] or to adapt to weak

supervision [168]. Recently, a generic black box combinatorial solver has been introduced [169]

and applied to AP optimization [68]. To overcome the brittleness of AP with respect to small

cosine similarities variations, an ad hoc perturbation is applied to positive and negative scores

during training. These methods provide elegant AP upper bounds, but are generally coarse AP

approximations.

Other approaches rely on designing smooth approximations of the rank function. This is

done in soft-binning techniques [67], [170]–[173] by using a smoothed discretization of similarity

scores. [174] relies on explicitly approximating the non-di↵erentiable rank functions using neural

networks. They thus require using synthetic data to learn a DNN and do not have any guarantees

on the learned function. Other methods, use a sum of sigmoid functions to approximate the

Heaviside function of Eq. (2.5) in the Smooth-AP approach [69] or the more recent Smooth-

Recall loss [70]. These approaches enable accurate surrogates by providing tight and smooth

approximations of the rank function. However, they lose some theoretical properties, such as

being upper bounds e.g. the rank approximation from [69] (illustrated on Fig. 2.7) uses the

sigmoid function ‡ Fig. 2.8b to approximate the Heaviside function:
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2.2. LOSSES IN IMAGE RETRIEVAL.

(a) Heaviside (step) function (b) Sigmoid function used in [69]

Figure 2.8: Illustration of the Heaviside function and the sigmoid used in [69] to approximate
it. The Heaviside function has gradient that are null or undefined. The sigmoid function has
non-zero gradients in the neighbour of 0, and null outside.

Smooth-rank(k) = 1 +
ÿ

jœ�
‡

3
sj ≠ sk

·

4
, · œ R (2.8)

Smooth-AP = 1
|�+|

·
ÿ

kœ�+

Smooth-rank+(k)
Smooth-rank(k) (2.9)

Using the sigmoid to approximate the Heaviside function and the rank had been introduced

in [79]. However, it has several drawbacks, the resulting loss is not an upper bound on the true

loss, and they can su↵er from ill-behaved or vanishing gradients.

2.2.2 Non-decomposable losses.

Another di�culty when optimizing ranking metrics is that they are not decomposable, i.e.

their value can not be computed over mini-batches and then averaged, as it would be the case

for other metrics, e.g. the accuracy. This is illustrated on the toy example from Fig. 2.9, on

each batch the average precision is 1 as the perfect ranking is achieved. However, the global

average precision is not one, as the global ranking is not correct.
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2.2. LOSSES IN IMAGE RETRIEVAL.

Figure 2.9: Illustration of the non-decomposability of ranking metrics. Each row represents
retrieved instances in a batch ranked by their cosine similarity with a query, the last row
represents the global ranking. On each batch the local ranking is perfect, i.e. the local ranking
is optimal. However on the bottom the global ranking is not perfect, thus the global ranking is
not optimal

Mini-batch training is mandatory in deep learning for computational e�ciency and per-

formances, although there has been works that try to use deep learning with non-stochastic

gradient descent [175]. However, SGD assumes that the loss can be linearly decomposed between

batches. Mini-batch training leads ranking metrics computed on batches to often over-estimate

the global metric, leading to optimization issues. There have been several research directions

in image retrieval to address this issue.

Non-decomposability is related to sampling informative constraints in simple ranking met-

rics surrogates, e.g. triplet losses, since the constraints’ cardinality on the whole training set

is prohibitive. This has been addressed by e↵ective batch sampling [176]–[178] or selecting

informative constraints within mini-batches [158], [178]–[180]. The di↵erence between di↵er-

ent “informative constraints” is illustrated on Fig. 2.10. Most of the triplets are “easy”, i.e.

the triplet loss constraint is already satisfied, thus they will not bring any information and

will reduce gradient from informative triplets. Researcher have found it useful to select either

“hard” or “semi-hard” triplets that do not respect the constraint and will be informative. In

cross-batch memory technique [73], the authors assume a slow drift in learned representations

to store them and compute global mining in pair-based deep metric learning.

In AP optimization, the non-decomposability has essentially been addressed by a brute force

increase of the batch size [67], [70], [169], [173], which is also a hard problem [181]. This includes

an important overhead in computation and memory, generally involving a two-step approach for

first computing the AP loss and subsequently re-computing activations and back-propagating
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(a) Variance of gradient at different noise levels.
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Figure 3: (a) shows the nuclear norm of a noisy gradient estimate for various levels of noise. High variance means the
gradient is close to random, while low variance implies a deterministic gradient estimate. Lower is better. Note that higher
noise levels have a lower variance at distance 0. This is due to the spherical projection imposed by the normalization.
(b) shows the empirical distribution of samples drawn for different strategies. Distance weighted sampling selects a wide
range of samples, while all other approaches are biased towards certain distances.

collapsed model. Random sampling yields only easy exam-
ples that induce no loss. Semi-hard negative mining finds a
narrow set in between. While it might converge quickly at
the beginning, at some point no examples are left within the
band, and the network will stop making progress. FaceNet
reports a consistent finding: the decrease of loss slows down
drastically after some point, and their final system took 80
days to train [25]. Distance weighted sampling offers a
wide range of examples, and thus steadily produce informa-
tive examples while controlling the variance. In Section 5,
we will see that distance weighted sampling brings perfor-
mance improvements in almost all loss functions tested. Of
course sampling only solves half of the problem, but it puts
us in a position to analyze various loss functions.

Figure 4a and Figure 4b depict the contrastive loss and
the triplet loss. There are two key differences, which in
general explain why the triplet loss outperforms contrastive
loss: The triplet loss does not assume a predefined thresh-
old to separate similar and dissimilar images. Instead, it
enjoys the flexibility to distort the space to tolerate outliers,
and to adapt to different levels of intra-class variance for
different classes. Second, the triplet loss only requires pos-
itive examples to be closer than negative examples, while
the contrastive loss spends efforts on gathering all positive
examples as close together as possible. The latter is not nec-
essary. After all, maintaining correct relative relationship is
sufficient for most applications, including image retrieval,
clustering, and verification.

On the other hand, in Figure 4b we also observe the con-
cave shape of the loss function for negative examples in the
triplet loss. In particular, note that for hard negatives (with
small Dan), the gradient with respective to negative exam-
ple is approaching zero. It is not hard to see why hard nega-
tive mining results in a collapsed model in this case: it gives

large attracting gradients from hard positive pairs, but small
repelling gradients from hard negative pairs, so all points
are eventually gathered to the same point. To make the loss
stable for examples from all distances, one simple remedy
is to use �2 instead of �22, i.e.

�triplet,�2 := (Dap � Dan + �)+ .

Figure 4c presents the loss function. Now its gradients with
respect to any embedding f(x) will always have length one.
See e.g. [12, 20] for more discussions about the benefits of
using gradients of a fixed length. This simple fix together
with distance weighted sampling already outperforms the
traditional �22 triplet loss, as shown in Section 5.

Margin based loss. These observations motivate our de-
sign of a loss function which enjoys the flexibility of the
triplet loss, has a shape suitable for examples from all dis-
tances, while offering the computational efficiency of a con-
trastive loss. The basic idea can be traced back to the in-
sight that in ordinal regression only the relative order of
scores matters [17]. That is, we only need to know the
crossover between both sets. Isotonic regression exploits
this by estimating such a threshold separately and then pe-
nalizes scores relative to the threshold. We use the same
trick, now applied to pairwise distances rather than score
functions. The adaptive margin based loss is defined as

�margin(i, j) := (� + yij(Dij � �))+ .

Here � is a variable that determines the boundary between
positive and negative pairs, � controls the margin of separa-
tion, and yij � {�1, 1}. Figure 4d visualizes this new loss
function. We can see that it relaxes the constraint on posi-
tive examples from contrastive loss. It effectively imposes a

Figure 2.10: Image taken from [65]. Hard batch mining consist in finding tuplets (e.g. triplets)
that are not respecting the constraints of the loss (e.g. triplet loss). It helps convergence and
achieving better performances. Authors of [65] define several types of hard negatives based on
their distance with the query and the margin used in the triplet losses, see Eq. (2.7). They
then bias triplet sampling towards “semi-hard” negatives, i.e. negatives that do not respect the
triplet constraints but have a lower similarity with the query than the positive.

gradients.

2.3 Hierarchical learning for robust retrieval.
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Fig. 2. ImageNet-Animal semantic hierarchy.
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Fig. 3. CIFAR-100 semantic hierarchy.
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Fig. 4. CIFAR-10 semantic hierarchy.
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Fig. 5. F-MNIST semantic hierarchy.

[16] at 95%). Note that [17] will always have C-Corrupt =
0 as it starts with the original base classifier hypothesis. The
proposed approach has the highest hierarchical accuracy score.

Examining the avg-sIG scores (reflecting the depth of pre-
dictions), the largest values (deepest predictions) are given
by [16], and are similarly supported by their low C/IC-
Withdrawn values. Many more examples were assigned to the
root ‘Unknown’ node for the proposed approach and [17].
However, we must evaluate the posteriors against the REF-
ERENCE posteriors to justify whether the deeper predictions
and lower withdrawals are actually warranted. The avg-REF-
diff (and standard deviation) for the proposed approach shows
that its posterior values are actually much closer and tighter to
the desired REFERENCE posterior values. The method of [17]
is overly confident and thus falsely assigns labels deeper in

the tree. Furthermore, the avg-REF (and standard deviation)
shows that the proposed method better meets/exceeds both
confidence thresholds ([17] only passes at 90%). Since [16]
optimizes only on the validation set during training, it cannot
guarantee that any test prediction meets/exceeds the confidence
threshold. It actually shows under-confidence in the avg-REF
values. From comparison to the REFERENCE method, the
results of proposed approach should therefore be accepted over
the other methods.

The results for F-MNIST are shown in Table II. The pa-
rameters used for [16] were �90% = 0.000 and �95% = 1.972.
As before, the proposed approach has a much stronger IC-
Reform than the other methods and a similar C-Corrupt. The
avg-sIG and C/IC-Withdrawn comparative trends are similar
to the previous dataset. The avg-REF-diff scores again show

Figure 2.11: Image taken from [182]. Hierarchical labels of the CIFAR-100 [50] dataset.

In standard task in deep learning such as classification, object detection or image retrieval,

the goal is to correctly predict the fine-grained classes of images. For instance, on CIFAR-

100 [50] the goal is to classify an image among the 100 fine-grained categories, e.g. dolphin,

cloud, motorcycle etc.. These tasks in their standard definition do not take into account what
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are the predictions of the models when they fail to recognize the fine-grained classes. We

refer to this as the mistake severity, i.e. how bad an error is. The notion of “how bad” is

hard to quantify. An interesting direction is to consider human preferences and measure how

severe humans will consider a particular error. Because human studies take time and would

be impossible to scale in order to evaluate the ever-growing number of deep learning research

papers, an interesting proxy for human preferences that has emerged is using class hierarchies,

illustrated for CIFAR-100 on Fig. 2.11. We will also discuss in Sec. 2.3.2 the optimization

in information retrieval based on relevance that can be based on human ratings. There also

has been progress in the field of NLP for “human alignment” based on the recent method

Reinforcement Learning with Human Feedbacks (RLHF) introduced in [183] and subsequently

used in [2], [3], [5] that is based human preferences and optimize using reinforcement learning

(RL), for instance with PPO [184]. Some works are also paving the way in computer vision, by

using RL to optimize target metrics in [185] or using RLHF to fine-tune Stable Di↵usion [186].

2.3.1 Hierarchical classification.

The first application of hierarchical modeling stem from NLP research [187], [188] and was

mostly motivated for e�ciency at training and test time. Hierarchical classification also has

a long history in computer vision. Originally, researchers aspired to enhance classification

performance by hierarchically organizing classes to enable more e�cient and accurate predic-

tions [189]–[192]. The hope was that such an approach would leverage the inherent structure

and relationships within the data, leading to improved results. However, modern deep neural

networks have mostly used the standard cross-entropy [44]–[46] as classifying at the fine-grained

level is the ultimate task of classification. Involving hierarchical information can confuse the

models and prevent them from learning su�cient discriminative features [193].

There has been a recent regain of interest in hierarchical classification [75], [194]–[196], with

the motivation of learning robust models by lowering their mistake severity Eq. (2.10). As the

authors of [75] phrase it, to make “better mistakes”. Optimizing the mistake severity is based

on lowering the LCA, “lowest common ancestor”. It is the distance between two labels in the

hierarchical tree. A lower LCA means that the labels are closely related, a greater LCA means

that the labels are further away in the hierarchical tree. A robust model, i.e. that minimizes

the mistake severity (MS) Eq. (2.10), minimizes the LCA between predictions and the ground

truths (gt) when it misclassifies instances.
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Figure 2.12: Image taken from [75]. Although predictive performance of models keep rising,
their mistake severity has stagnated over the years.

Figure 2.13: In closed set, the images from the training and test sets are from the same classes.
In open set, the training and test classes are disjoint.
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MS = Emisclassified [LCA(ypred, ygt)] (2.10)

This type of robustness was shown to be not achieved by solely having better fine-grained

accuracy: [75] showed that, while model have improved over the years on fine-grained classifi-

cation, their mistake severity has however remained the same, as shown in Fig. 2.12. However,

hierarchical classification is evaluated in closed set, i.e. train and test classes are the same.

Whereas, image retrieval considers the open set paradigm, where classes are distinct between

train and test sets to better evaluate the generalization abilities of learned models. This dif-

ference of evaluation is illustrated on Fig. 2.13, limiting their application in image retrieval.

Furthermore, recent successful hierarchical classification methods rely on using several clas-

sifiers [195], [196], whereas standard image retrieval setting mostly rely on learning a single

embedding for the image. Using several embedding would strongly impact the already costly

querying cost.

2.3.2 Graded predictions.

The Information Retrieval community uses datasets where documents can be more or less

relevant depending on the query [197], [198]. As seen on Fig. 2.14, each movie in the database

is assigned a score based on the movies a user has seen. The quality of their retrieval engine is

quantified using ranking based metrics such as the NDCG [143], [144].

5 4 3 2 1 0
User

Figure 2.14: Based on the movies the query user has seen, each movie in the database has a
relevance assigned to it.

The NDCG can accommodate multiple level of similarity between a query and a retrieve

instance. This is done via a relevance function, denoted as “rel” that indicates how similar a
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pair of instances are. The NDCG is defined as follows:

DCG =
ÿ

kœ�+

rel(k)
log2(1 + rank(k))

iDCG = max
rank

DCG

NDCG = DCG

iDCG
(2.11)

Similarly to metrics introduced previously, the NDCG is also defined using the ranking

function. Several works have investigated how to optimize the NDCG, e.g. using pairwise

losses [199] or smooth surrogates [79], [200]–[202]. These works however focused on NDCG, and

are without any theoretical guarantees: the surrogates are approximations of the NDCG but not

lower bounds, i.e. their maximization does not imply improved performances during inference.

An additional drawback is that NDCG does not relate easily to average precision [203], the

most common metric in image retrieval. Fortunately, there have been some works done to

extend AP in a graded setting where relevance between instances is not binary [80], [204]. The

graded Average Precision from [80] is the closest to our work as it leverages SoftRank for direct

optimization of non-binary relevance, although there are significant shortcomings. There is

no guarantee that the SoftRank surrogate actually minimizes the graded AP. In addition, it

requires annotating datasets with pairwise relevances, which is impractical for large scale image

retrieval settings.

2.3.3 Hierarchical image retrieval.

sika
deer

mammal

A scalable metric
with dynamic range

query

Threshold !1 Threshold !3Threshold !2

similar dissimilar

flexible

Figure 2.15: Image taken from [81]. Hierarchical image retrieval as two main goals. 1) reduce
mistake severity, i.e. it is better to retrieve a “deer” than a “turtle” for a “sika” query. 2) When
given a “sika” query, first images should be “sika”, then “deer” and finally “mammal”.

Hierarchical image retrieval is a complicated task as it involves learning su�ciently dis-

criminative features to be able to retrieve the correct fine-grained instances while also ensuring
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that fine-grained classes from the same super categories closer in the embedding space than

fine-grained categories from other super categories. On Fig. 2.15 this would mean that when

querying an image of a “sika” the closest images should be of other “sika”, i.e. su�ciently

discriminative from other “deer”. But the image query of a “sika” should be closer to other

“deer” than to di↵erent “mammal”. As discussed previously in the standard image retrieval

setup, images from the same super categories often are considered “hard negatives” [65], [173]

and models are optimized to discriminated strongly images from the same super categories.

Even works that consider non-binary losses, e.g. [148], [205], were observed in [122] to still

make severe mistakes.. However, for application in search engine it is important to have two

robustness properties:

1. Errors should not be too severe, i.e. it is better to have “deer” false positives on Fig. 2.15

than “birds” false positives.

2. After the fine-grained instances are retrieved, the results should somewhat still be relevant

for the query, i.e. after all “sika” images are retrieved on Fig. 2.15 images of “deer” then

“mammal” should come after.

Recently, the authors of [81] introduced three new hierarchical benchmarks datasets, DyML

(DyML-Animal is illustrated on Fig. 2.15), for hierarchical image retrieval. Building on the

idea that models should have strong performances on fine-grained, but also consider the super

categories. Researchers have subsequently designed losses that extend proxy-based losses to the

hierarchical setting [81], [206], [207]. In another fashion, [82] introduces the CLCD loss that

uses a “cross distillation” loss, a type of pair loss at di↵erent level of semantics. These works

extend standard proxy-losses to the hierarchical setting and try to structure the embedding

space in a hierarchical manner. However, these methods face the same limitations as the usual

proxy losses: minimizing them do not explicitly optimize a well-behaved hierarchical evaluation

metric, e.g. NDCG or H-AP introduced in Chapter 4.
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2.4 Out-of-distribution detection.

Figure 2.16: Image from
@ realrusty / ViralHog.com.
A Tesla’s Autopilot system
appeared to confuse a horse-
drawn carriage, which is not
present in the training set,
for a truck.

Out-of-distribution (OOD) detection is a major safety re-

quirement for deep neural networks deployment in real world

settings. OOD detection is another aspect of DNN robustness.

In standard classification evaluation, the images at test time are

assumed to be coming from the same distribution as the training

set. However, in real scenarios some object at test time could

not come from the in-distribution, i.e. the training set. This

is illustrated by Fig. 2.16, in which an autonomous system mis-

classifies a horse-drawn carriage as a truck. It was shown in [84]

that DNN su↵er from overconfidence, which makes it hard to

distinguish when a model is making a mistake.

OOD detection is formulated as a binary classification prob-

lem. At inference time, an OOD detection “scorer” must decide

whether an image x is from the in distribution (ID) or not (OOD):

G⁄(x) =
Y
]

[
ID, if E(x) Æ ⁄

OOD, if E(x) > ⁄
(2.12)

where samples with low energies E(x) are classified as ID

and vice versa, and ⁄ is a threshold. The threshold ⁄ is typically

chosen so that a high fraction of ID data (e.g. 95%) is correctly

classified.

2.4.1 Post-hoc out-of-distribution detection.

(c) Anomaly Detection & Novelty Detection
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(a) Out-of-Distribution Detection
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Figure 2.17: Image taken from [208]. Di↵erent families of out-of-distribution detection methods.

Seminal attempts for OOD detection used supervised methods based on external OOD

samples [86], [87] or “Outlier Exposure” (OE) [209] enforcing a uniform OOD distribution.

Although OOD datasets can improve OOD detection, their relevance is questionable since
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collecting representative OOD datasets is arguably impossible as OOD lie anywhere outside

the training distribution [210]. It can also have the undesirable e↵ect of learning detectors

biased towards certain types of OOD [211].

Another drawback from OE is that it requires training the predictive model, which limits

the adoption of strong pre-trained backbones or “zero-shot” foundation models. This can also

be prohibitive when using large neural networks on large amounts of data. To better address

these issues, there has been a growing popularity amongst the OOD detection community

for “post-hoc” approaches. This type of approaches uses pre-trained backbones, e.g. ResNet-

50 [45] on ImageNet, and exploits aspects of these backbones to detect OOD samples. This rich

literature was classified in [208] into several families of OOD detection method, and illustrated

on Fig. 2.17.

First methods were based on the classification from a pre-trained DNN. For instance, the

well-known maximum class probability of [85] uses the maximum softmax probability of the

classifier as the score used in Eq. (2.12). Other classification based methods include Odin [212],

energy-logits [94] or DICE [92]. Other type of methods rely on distances in the feature space.

[91] and [89] use the Mahalanobis distance, [90] relies on the kNN distance, or [213] relies on

Gram matrix computed from layer activations.

Another direction is using reconstruction approaches. For instance in [214] authors leverage

masked-autoencoders [9] or in Di↵Guard [215] authors use di↵usion models, they both compute

the reconstruction error of an image. However, they require a second neural network, i.e. the

decoder in [214] or a di↵usion model in [215], which can entail a large computational overhead

in the case of di↵usion models.

The last family of methods identified in [208] are density based methods, e.g. [88] that com-

putes the likelihood of an image using autoencoder networks. Note that some methods can be

classified in more than one family. For instance, [94] proposes an energy score derived from

the logsumexp of the logits of the classifier, which is closely related to the density. Similarly,

the class conditional GMM of [91] and [89] approximate the ID features by making a Gaussian

assumption for the true ID distribution. Finally, authors of [90] argue that the kNN distri-

bution approximates well the ID features distribution, which allows e�cient OOD detection

as illustrated on Fig. 2.18. Although these methods are e�cient they lack expressiveness, e.g.

whereas using a GMM to estimate the density as in [89], [91] is a good approximation it can

not fully model the ID distribution with its rigid Gaussian assumption.
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Figure 2.18: Image adapted from [90]. The kNN distribution allows to approximate the ID
features distribution, thus allowing OOD detection.

2.4.2 Energy-based models.

EBMs [93] are another approach to estimate the ID density. They are unnormalized density

model defined via an energy function E◊ : Rm
æ R parameterized by a neural network with

parameters ◊. For z œ Rm, the probability density is given by the Boltzmann distribution

p◊(z) = 1
Z◊

exp (≠E◊(z)), (2.13)

where Z◊ is the partition function which is intractable in high dimension. EBMs are trained

via maximum likelihood estimation (MLE), which amounts to perform stochastic gradient de-

scent with the following loss:

LMLE = Ez≥pin

Ë
E◊(z)

È
≠ EzÕ≥p◊

Ë
E◊(zÕ)

È
. (2.14)

This builds upon the fact that Ò◊(≠ log p◊i(z)) can be computed without computing the

intractable normalization constant Z◊ (see Appendix C.1 for more details). The LMLE is illus-

trated on Fig. 2.19, the energy of real data pin is minimized, while the energy of generated data

is maximized p◊. To synthesize examples from p◊, one can use gradient-based MCMC sam-

pling, such as Stochastic Gradient Langevin Dynamics (SGLD) [216] or Hamiltonian Monte

Carlo (HMC) [217]. We will focus in this thesis on SGLD, following recent success of SGLD for

EBMs [218], [219].

EBMs are flexible, and do not require dedicated architectures, contrary to e.g. Normalizing

Flows [220]. They have made incredible progress in generative modeling for images in recent
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Figure 3: How training affects the energies of the possible answers in the discrete case: the
energy of the correct answer is decreased, and the energies of incorrect answers are increased,
particularly if they are lower than that of the correct answer.
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Figure 4: The effect of training on the energy surface as a function of the answer Y in the con-
tinuous case. After training, the energy of the correct answer Y i is lower than that of incorrect
answers.

9

Figure 2.19: Image taken from [93]. The e↵ect of training on the energy surface as a function
of the answer Y in the continuous case. After training, the energy of the correct answer Y is
lower than that of incorrect answers.

years [218], [219], [221]. However, their performances for OOD detection are not yet compara-

ble with OOD methods based on the feature space [222]. [94] have proposed to perform OOD

detection with an energy score defined by the logsumexp of the logits (EL) of the pre-trained

classifier, showing improvement over using the classifier’s predicted probabilities [85]. Further-

more, the authors of EL propose to fine-tune the logits of the classifier using external OOD

datasets. However, this approach can again su↵er from biases from the choice of the external

OOD datasets.

2.4.3 Residual learning.

Training hybrid models, where a data-driven residual complements an approximate pre-

dictor, has been proposed in several contexts, e.g. in complex dynamic forecasting [224], in

NLP [225], in video prediction [226], [227], or in robotics [223]. Di↵erent types of learning

paradigm are illustrated on Fig. 2.20. [223] proposes to combine physic laws and a learned

residual model for robotics.

Energy-based models have also been used to learn a correction of a reference model q(z):

p
h
◊ (z) = 1

Z(◊)p
r
◊(z)q(z), (2.15)

with Z(◊) = s
p

r
◊(z)q(z)dz the normalization constant. The residual density p

r
◊(z) is learned

with an EBM: p
r
◊(z) Ã exp (≠E◊(z)).
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Figure 2.20: Image taken from [223]. (a) depicts a standard machine learning model, i.e.
learned. (b) uses a prior, e.g. physics laws, to make prediction, (c) & (d) illustrate a residual
approach by combining a prior and learned model.

This idea has been explored in noise contrastive estimation (NCE) [228] where the correction

is obtained by discriminative learning. Learning an EBM in cooperation with a generator model

has been introduced in [229] where an EBM learns to refine generated samples and has also

been applied to cooperative learning of an EBM with a conditional generator [230], a VAE

[231]–[233] a normalizing flow [234], [235]. However, these methods were not designed for OOD

detection, as they focus on generation and cannot benefit from a fixed prior OOD detector as

they use a cooperative learning strategy.

Such residual approaches have also emerged for OOD detection. ResFlow [236] uses a

normalizing flow (NF) to learn the residual of a Gaussian density for OOD detection. However,

NFs require invertible mapping, which intrinsically limit their expressive power and make the

learned residual less accurate, whereas EBMs are more flexible and can be implemented using a

simple multi-layer perceptron. Also, ViM [211] proposes to model the residual of the ID density

by using the complement of a linear manifold on the ID manifold. This linear residual however

limits the expressiveness of the method, and leads to lower experimental performances.

2.4.4 Ensembling & composition.

The question of merging several networks, also known as ensembling [238] has been among

the first and most successful approaches for OOD detection. The ensemble can include di↵erent
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Figure 2.21: Image taken from [237]. In deep ensembles, multiple DNN are used to make the
final predictions. It can also be a good method for OOD detection.

backbones or di↵erent training variants. For OOD detection, several post-hoc approaches also

model the ID density at di↵erent layer depth of a pre-trained model, the overall density score

being obtained by ensembling such predictions [91], [236], [239]. The main limitation of these

approaches is their computational cost since the inference time is proportional to the number

of networks, although other method for deep ensembles [240] would be worth exploring. The

overhead quickly becomes prohibitive in contexts with limited resources. Several sources of

prior densities are combined in [211] to refine OOD detection. This idea can be integrated in a

principled framework such as the EBM composition model [241], [242]. Allowing to include sev-

eral hybrid energy terms to refine ID density estimation, with limited computational overhead

at inference time.
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Chapter 3

Optimization of Ranking Losses for Image
retrieval

As discussed previously, standard evaluation metrics in image retrieval rely on score ranking,

e.g. average precision (AP), recall at k (R@k), normalized discounted cumulative gain (NDCG).

In this chapter, we address the two major challenges presented in Chapter 2 for end-to-end

training of deep neural networks with rank losses: non-di↵erentiability and non-decomposability,

by introducing a general framework for robust and decomposable rank losses optimization.

Firstly, we propose a general surrogate for ranking operator, SupRank, that is amenable to

stochastic gradient descent. It provides an upper-bound for rank losses, which guarantees that

the target loss is optimized, and we show that it improves gradient flow compared to the sigmoid

approximation discussed in Sec. 2.2.1. Secondly, we define the decomposability gap, DG, which

is the gap between the averaged batch approximation of ranking losses and their values on

the whole training set. We then propose a simple yet e↵ective loss function to reduce it. We

give theoretical analysis as to why this proposed loss will help reduce non-decomposability. We

apply our framework to two standard metrics for image retrieval: AP and R@k and show the

experimental gains brought by our framework compared to previous surrogate losses. Code is

released at github.com/elias-ramzi/ROADMAP.
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3.1 Introduction.

As discussed in Sec. 2.2, performances of image retrieval systems are often measured using

list-wise or ranking-based metrics, e.g. average precision (AP), recall rate at k (R@k), or Nor-

malized Discounted Cumulative Gain (NDCG). These metrics penalize retrieving non-relevant

images before other remaining relevant images and are used in several tasks implying a large

imbalance between positive and negative samples. For instance, AP is also the de facto metric

used in several computer vision tasks, e.g. object detection or long-tailed classifications.

Although these metrics are suited to evaluate image retrieval, their use for training deep neu-

ral networks is limited. They have two main drawbacks: i) they are not amenable to stochastic

gradient descent (SGD) and thus cannot be used directly to train deep neural networks (DNN),

ii) they are not decomposable as they do not decompose linearly between samples.

Figure 3.1: We define LSupAP using SupRank. LSupAP Ø LAP and ÒLSupAP > 0 in this example,
in contrast to SmoothAP [69]. This ensures robust training and comes from a new approxima-
tion of the rank function, SupRank.

Designing surrogate losses. Because rank losses are not directly amenable to gradient de-

scent, there is a rich literature dedicated to designing appropriate surrogate losses that we

discussed in Chapter 2. Most historical methods rely on n-uplet losses [65], [117], [118], [155]–

[160] to optimize local rankings. Another family of losses are classification based losses [66],

[161]–[164], [243] that reduce the number of comparisons required during training compared

to n-uplet losses. Because n-uplet losses and classification losses do not directly relate to the
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Figure 3.2: LAP non-decomposability: LAP = 0 in all batches B
i despite LAP ”= 0 over the

whole
t

i B
i.

evaluation metrics, there also has been extensive work to create list-wise losses amenable to

gradient descent [165]–[168] that create coarse upper bounds of the target metric. Or tighter

approximations thanks to fine approximation of the rank [67], [69], [70], [169]–[174] but loosen

theoretical properties, e.g. being upper bounds on the true rank losses, guaranteeing that their

optimization will increase the performances. The work presented in this chapter relates to re-

cent approximations that use the sigmoid to approximate the rank to provide accurate surrogate

losses for the AP in [69] or R@k in [70]. In this work, we show some of the shortcomings of this

approximation, illustrated on Fig. 3.1 for LSmoothAP of [69]. The sigmoid approximation results

in surrogate losses that are not upper-bounds of the true AP loss. For example, on Fig. 3.1,

we can see that LAP = 0.41 whereas LSmoothAP = 0.38, meaning that optimizing LSmoothAP

will not necessarily result in a lower LAP. This approximation also lacks good gradient flow,

as shown in Fig. 3.1, LSmoothAP produces gradients that tend to decrease the similarity of a

positive instance, which is not a desirable behavior. This is further discussed in Sec. 3.4.1.

Addressing non-decomposability. Mini-batch training is mandatory in deep learning, both

due to computational constraints and because SGD improves generalization [244]. However, it

assumes that the loss functions decomposes linearly between samples, as discussed in Chapter 2,

which is not the case for rank losses. Thus, during rank loss training, the loss averaged over

batches generally underestimates its value on the whole training dataset, which we refer to

as the decomposability gap, DG. This is illustrated on the toy example of Fig. 3.2, on each

batch LAP = 0 as the optimal ranking is achieved, however on the whole set � we can see that

LAP ”= 0. As discussed in Sec. 2.2.2 attempts in image retrieval to circumvent the problem

involve ad hoc methods based on hard batch sampling strategies [65], [158], [177], [178], storing

all training representations/scores [68], [73] or using larger batches [67], [70], [173], leading to
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complex models with a large computational or memory overhead.

The core of our approach is a unified framework to optimize rank losses for image retrieval.

We will see in Chapter 4 an extension to hierarchical image retrieval. Specifically, our contri-

butions are:

• To propose a smooth approximation of the rank in Sec. 3.2.2, SupRank, that overcomes

the theoretical shortcomings discussed previously. SupRank is amenable to SGD and is

an upper bound on the true rank, with a di↵erent behavior for positive and negative

examples. This design leads to smooth losses that are upper bounds of the true losses,

and always back-propagates gradients when the correct ranking is not satisfied as detailed

in Sec. 3.4.

• To define the decomposability gap in Sec. 3.2.3. We use an additional objective at training

time to reduce DG, and thus the non-decomposability of smooth rank losses, without the

need to increase the batch size. It is a simple yet e↵ective training objective LDG, which

calibrates the scores among di↵erent batches by controlling the absolute value of positive

and negative samples. We provide in Sec. 3.4.2 a theoretical analysis showing that LDG

decreases the decomposability gap.

• To apply this framework to two popular metrics for image retrieval: AP in Sec. 3.3.1 and

R@k in Sec. 3.3.2. The resulting surrogates losses are both upper bounds of their target

metric.

• To provide a thorough experimental validation including three standard image retrieval

datasets and show that optimizing AP with our framework outperforms state-of-the-art

methods. We also report the large and consistent gain compared to rank approximation

baselines on both AP and R@k, and we highlight in the ablation studies the importance

of our two components.

3.2 Robust and decomposable rank losses.

We present in this section our framework for RObust and Decomposable (ROD) dedicated

to direct optimization of rank losses with stochastic gradient descent (SGD), see Fig. 3.3.
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3.2. ROBUST AND DECOMPOSABLE RANK LOSSES.

Figure 3.3: Illustration of our unified framework. We use a deep neural network f◊ to embed
images. We then optimize its weights in an end-to-end manner using two losses: 1) we optimize
the ranking-based evaluation metric using an upper bound approximation of the rank, rank≠

s ,
enforcing the batch’s positive embeddings to have higher cosine similarity with the query than
the batch’s negatives; 2) we reduce the decomposability gap, DG, of rank losses using a de-
composability loss, that supports that positives have higher similarity with the query than all
negatives even outside the batch.

3.2.1 Preliminaries.

Let us consider a retrieval set � = {xj}jœJ1;NK composed of N elements, and a set of M

queries Q. For each query qi, each element in � is assigned a relevance [197] rel(xj , qi) œ {0, 1},

such that rel(xj , qi) = 1 (resp. rel(xj , qi) = 0) if xj is relevant (resp. irrelevant) with respect

to qi, i.e. if xj and qi share the same fine-grained label. In the next chapter Chapter 4, we

will see that our framework can be extended to hierarchical image retrieval setting discussed

in Sec. 2.3 by modeling more complex pairwise relevance with rel(xj , qi). Positive relevance

defines the set of positives for a query, i.e. �+
i := {xj œ �| rel(xj , qi) = 1}. Instances with a

relevance of 0 are the negatives, i.e. �≠

i := {xj œ �| rel(xj , qi) = 0}.

For each xj œ �, we compute its embedding vj œ Rd. To do so, we use a neural network f◊

parameterized by ◊: vj := f◊(xj). In the embedding space Rd, we compute the cosine similarity

score between each query qi and each element in �: s(qi, xj) = vqi
T
vj/||vqi|| · ||vj||.

During training, our goal is to optimize, for each query qi, the model parameters ◊ such

that the ranking, i.e. decreasing order of cosine similarity, matches the ground truth ranking,

i.e. decreasing order of relevances. More precisely, we optimize a ranking-based metric 0 Æ

Mi Æ 1 that penalizes inversion between positive instances and negative ones, Mi = 1 meaning
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3.2. ROBUST AND DECOMPOSABLE RANK LOSSES.

achieving the best ranking. The target loss is averaged over all queries:

LM(◊) = 1 ≠
1

M

Mÿ

i=1
Mi(◊, �i) (3.1)

As previously mentioned, there are two main challenges with SGD optimization of rank

losses: i) they are not di↵erentiable with respect to ◊ which comes from the ranking operator,

and ii) they do not linearly decompose into batches indeed for each query LM needs to be

computed on the whole set �i as seen on Eq. (3.1). We propose to address both issues: we

introduce a robust di↵erentiable ranking surrogate, SupRank (Sec. 3.2.2), and add a decom-

posable objective (Sec. 3.2.3) to improve rank losses’ behavior in a batch setting. Our final

RObust and Decomposable (ROD) loss LROD-M combines a di↵erentiable surrogate loss of a

target metric ,LSup-M, which is an upper bound meaning that optimizing the surrogate results

in optimizing the target metric; and the decomposable objective LDG which allows optimizing

the loss until the targeted global ranking is achieved; with a linear combination weighted by

the hyperparameter ⁄:

LROD-M(◊) = (1 ≠ ⁄) · LSup-M(◊) + ⁄ · LDG(◊) (3.2)

Our unified framework for end-to-end training of DNN is illustrated in Fig. 3.3. Using f◊

we encode both the query q and the rest of the images in the batch �. Optimizing the rank

loss supports the correct –partial– ordering in a batch based on our surrogate of the rank,

SupRank. Optimizing the decomposability loss supports that the positives will be ranked even

before negative items that are not present in the batch. Both losses are amenable to gradient

descent, which makes possible to update the model parameters with SGD.

3.2.2 Robustness in smooth rank approximation.

The non-di↵erentiability in rank losses comes from the ranking operator, which can be

viewed as counting the number of instances that have a similarity score greater than the con-

sidered instance: rank(k) = 1 + q
jœ� H(sj ≠ sk), as seen earlier in Eq. (2.5). For the sake of

readability, we drop in this section the dependence on the query, i.e. dependence with i. In

this chapter, we propose to rewrite the rank, which will be motivated in Sec. 3.2.2.1:

rank(k) = 1 +
ÿ

jœ�+
k

H(sj ≠ sk)

¸ ˚˙ ˝
rank+(k)

+
ÿ

jœ�≠
k

H(sj ≠ sk)

¸ ˚˙ ˝
rank≠(k)

(3.3)
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3.2. ROBUST AND DECOMPOSABLE RANK LOSSES.

(a) H
+(x) = H(x) in Eq. (3.3) (b) H

≠(x) in Eq. (3.4) (c) Sigmoid used in [69]

Figure 3.4: Proposed surrogate losses for the Heaviside (step): with H
+(x) in Fig. 3.4a and

H
≠(x) in Fig. 3.4b. Using H

≠ in Eq. (3.5) leads to smooth, and upper bounds rank losses. In
addition, H

≠(x) back-propagates gradients until the correct ranking is satisfied, in contrast to
the sigmoid used in [69] (Fig. 3.4c).

where H is the Heaviside (step) function H(t) = 1 if t Ø 0, 0 otherwise. Note that for

both rank+(k) and rank≠(k) in Eq. (3.3) k is always positive, i.e. in �+, and xj can either be

negative, i.e. in �≠, in rank≠ or positive in rank+, i.e. in �+.

From Eq. (3.3) it becomes clear that the rank is non-amenable to gradient descent opti-

mization due to the Heaviside (step) function H (see Fig. 3.4a), whose derivatives are either

zero or undefined.

3.2.2.1 SupRank: smooth approximation of the rank.

To provide rank losses amenable to SGD, we introduce a smooth approximation of the

rank function. We propose a di↵erent behavior between rank+(k) and rank≠(k) in Eq. (3.3)

by defining two functions H
+ and H

≠. For rank+(k), we keep the Heaviside function, i.e.

H
+ = H (see Fig. 3.4a), meaning that we do not approximate rank+(k). This ignores rank+(k)

in gradient-based ranking optimization. This is done on purpose, indeed for metrics such as AP

or R@k optimizing rank+, i.e. switching the order of positive instances, does not improve the

metrics. Furthermore, in the case of rank approximation, e.g. Smooth-AP, it can be shown that

it adds noise to the final gradient. We give more details in the theoretical analysis of smooth

approximation of the rank Sec. 3.4.1. It has also been observed in other works that optimizing

rank≠ is su�cient [245].

For rank≠(k), we want a smooth surrogate H
≠ for H that is amenable to SGD and an upper

bound on the Heaviside function. We define the following H
≠ function, illustrated in Fig. 3.4b,
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Figure 3.5: Gradient of the temperature scaled sigmoid (· = 0.01) vs. the di↵erence of scores
sk ≠ sj of a negative pair.

that is both:

H
≠(t) =

Y
__]

__[

‡( t
· ) if t Æ 0, where ‡ is the sigmoid function (Fig. 3.4c)

‡( t
· ) + 0.5 if t œ [0; ”] with ” Ø 0

fl · (t ≠ ”) + ‡( ”
· ) + 0.5 if t > ”

(3.4)

where ‡ is the sigmoid function (Fig. 3.4c), ”, · and fl are hyperparameters. ” is chosen such

that the sigmoidal part of H
≠ reaches the saturation regime. We keep · as in [69] and study

the robustness to fl in the experimental section Sec. 3.5.

From H
≠ in Eq. (3.4), we define the following rank surrogate that can be used plug-and-play

for rank losses optimization:

rank≠

s (k) =
ÿ

jœ�<
k

H
≠(sj ≠ sk) (3.5)

Choice of ”. ” is introduced in Eq. (3.4) to define H
≠. We choose ” as the point where the

gradient of the sigmoid function becomes low < ‘, and we then have ” = · · ln 1≠‘
‘ . This is

illustrated in Fig. 3.5. For our experiments, we use ‘ = 10≠2 giving ” ƒ 0.05.

SupRank has two main features:

I 1 Surrogate losses based on SupRank are upper bound of the target metrics, since H
≠

in Eq. (3.4) is an upper bound of a step function (Fig. 3.4b). This is an important property,

since it ensures that the model keeps training until the correct ranking is obtained. It is worth
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noting that existing smooth rank approximations in the literature [67], [69], [172], [173] do not

fulfill this property.

I 2 SupRank brings training gradients until the correct ranking plus a margin is fulfilled.

When the ranking is incorrect, an instance with a lower relevance xj is ranked before an instance

of higher relevance xk, thus sj > sk and H
≠(sj ≠ sk) in Eq. (3.4) has a non-zero derivative.

We use a sigmoid to have a large gradient when sj ≠ sk is small. To overcome vanishing

gradients of the sigmoid for large values sj ≠ sk, we use a linear function ensuring constant fl

derivative. When the ranking is correct (sj < sk), we enforce robustness by imposing a margin

parameterized by · (sigmoid in Eq. (3.4)). This margin overcomes the brittleness of rank losses,

which vanish as soon as the ranking is correct [169], [170], [173].

Comparison to sigmoid approximation [69], [70]. SupRank di↵ers from the sigmoid in [69],

[70] by i) providing an upper bound on the target rank loss (i.e. AP and R@k), ii) improving

the gradient flow (Fig. 3.4b vs Fig. 3.4c), and iii) overcoming adverse e↵ects of the sigmoid

for rank
+, as shown in Fig. 3.1. We experimentally verify the consistent gain brought out by

SupRank over the sigmoid approximation. We formalize the intuitions of this paragraph later

in Sec. 3.4.1.

3.2.3 Decomposable rank losses.

As illustrated in Eq. (3.1), rank losses decompose linearly between queries qi, but do not

between retrieved instances. We therefore focus our analysis of the non-decomposability on a

single query. For a retrieval set � of N elements, we consider {Bb}bœ{1:K} batches of size B,

such that N/B = K œ N. Let Mb(◊) be the metric M in batch b for a query, we define the

“decomposability gap” DG as:

DG(◊) = 1
K

Kÿ

b=1
Mb(◊) ≠ M(◊) (3.6)

DG in Eq. (3.6) is a direct measure of the non-decomposability of any metric M. Our moti-

vation here is to decrease DG, i.e. to have the average metric over the batches lower or equal

to the metric computed on the whole set. Note that in some cases DG can be negative, i.e.
1
K

qK
b=1 Mb(◊) < M(◊), although this means the M is not well estimated, it is still a favorable

case. It means that optimizing our batch approximate was su�cient to optimize the overall

metric.

We illustrate the decomposability gap DG, for AP, on a toy dataset Fig. 3.6.
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Figure 3.6: Illustration of AP’s decomposability gap on a toy dataset.

In order to improve the decomposability of ranking losses, we use an additional loss, and we

propose two di↵erent losses. This additional loss should support that the local ranking is closer

to the global ranking. Using an additional loss introduce little overhead as it is still computed

in batch-wise manner.

Pair-based decomposability loss. We use the following decomposability loss LDG, illustrated

on Fig. 3.7:

LDG(◊) = 1
|�+|

ÿ

xjœ�+
[– ≠ sj]+ + 1

|�≠|

ÿ

xjœ�≠

[sj ≠ —]+ (3.7)

where [x]+ = max(0, x). The loss L
+
DG enforces the score of the positive xi œ �+ to be larger

than –, and L
≠

DG enforces the score of the negative xj œ �≠ to be smaller than — < –. LDG

is a contrastive pair-based loss [118], which we revisit in our context to “calibrate” the scores

between mini-batches. Intuitively, the fact that the positive (resp. negative) scores are above

(resp. below) a threshold – (resp. —) in the mini-batches makes Mb closer to M, which we

support with an analysis in Sec. 3.4.2.

Proxy-based decomposability loss. Motivated by other works [96] we introduce a di↵erent

decomposability objective, a proxy-based loss:

L
ú

DG(◊) = ≠ log

Q

ca
exp(vT

y py

÷ )
q

pzœZ exp(vT
y pz

÷ )

R

db , (3.8)

where py is the normalized proxy corresponding to the fine-grained class of the embedding vy,

Z is the set of proxies, and ÷ is a temperature scaling parameter. L
ú

DG is a classification-
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Figure 3.7: LDG reduces the non-decomposability by comparing the cosine similarities in each
batch to absolute references, – and —.

based proxy loss, or NormSoftMax [66], that imposes a margin between instances and the

proxies. L
ú

DG has thus a similar e↵ect to LDG on the decomposability of rank losses. In our

experiments, we show that both decomposability losses improve ranking losses optimization.

And in practice L
ú

DG is easier to optimize in large scale settings, we hypothesize that this is

because the comparison between batches, i.e. the references, is learned instead of fix – and —

in LDG.

3.3 Instantiation to standard image retrieval.

In this section, we apply the framework described previously to standard image retrieval.

Specifically, we show how to directly optimize two metrics that are widely used in the image

retrieval community, i.e. AP and R@k.

3.3.1 Application to Average Precision.

The average precision measures the quality of a ranking by penalizing inversion between

positives and negatives. It strongly penalizes inversion at the top of the ranking. It is defined

for each query qi as follows:

APi = 1
|�+

i |

ÿ

kœ�+
i

rank+(k)
rank+(k) + rank≠(k) (3.9)

The overall AP loss LAP is averaged over all queries:

LAP(◊) = 1 ≠
1

M

Mÿ

i=1
APi(◊) (3.10)
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Using our surrogate of the rank, SupRank, we define the following AP surrogate loss:

LSupAP(◊) = 1 ≠
1

M

Mÿ

i=1

1
|�+

i |

ÿ

kœ�+
i

rank+(k)
rank+(k) + rank≠

s (k) (3.11)

LSupAP is an upper bound on LAP, as rank≠

s (k) > rank≠(k) is on the denominator, which

is then combined with the minus sign before the sum. Finally, we equip the AP surrogate

loss with the LDG loss to support the decomposability of the AP, yielding our RObust And

DecoMposable Average Precision:

LROADMAP(◊) = (1 ≠ ⁄) · LSupAP(◊) + ⁄ · LDG(◊) (3.12)

3.3.2 Application to the Recall at k.

Another metric often used in image retrieval is the recall rate at k. In the image retrieval

community, it is often defined as:

R@k = 1
M

Mÿ

i=1
1(positive element in top-k) (3.13)

However, in the literature, the recall is most often defined as:

TR@k = 1
M

Mÿ

i=1

# positive elements in top-k

min(k, # positive elements) (3.14)

It was shown in [70] that the TR@k can be written similarly to other ranking-based metrics,

i.e. using the rank, for each query qi as:

TR@k = 1
M

Mÿ

i=1

1
min(|�+

i |, k)
ÿ

pœ�+
i

H (k ≠ rank(p)) (3.15)

Using the expression of Eq. (3.15) and SupRank we can derive a surrogate loss function for

the recall:query as:

LSup-R@k(◊) = 1 ≠
1

M

Mÿ

i=1

1
min(|�+

i |, k)
ÿ

pœ�+
i

‡

Q

a
k ≠

1
rank+(p) + rank≠

s (p)
2

· ú

R

b (3.16)

LSup-R@k is again an upper bound, as rank≠(k) is on the numerator, followed by two mi-

nus signs. The authors of [70] use di↵erent level of recalls in their loss, which we follow i.e.
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LSup-R@K = 1
|K|

q
kœK LSup-R@k, it is necessary to provide enough gradient signal to all posi-

tive items. To train LSup-R@k, it is also necessary to approximate a second time the Heaviside

function, using a sigmoid with temperature factor ·
ú. We combine it with LDG, yielding the

resulting di↵erentiable and decomposable R@k loss:

LROD-R@K(◊) = (1 ≠ ⁄) · LSup-R@K(◊) + ⁄ · LDG(◊) (3.17)

3.4 Theoretical analysis and intuitions.

3.4.1 Properties of SupAP & comparison to SmoothAP.

We further discuss and give additional explanations of the property of our LSupAP approxi-

mation, and especially its comparison with respect to the sigmoid used in SmoothAP [69].

As shown in Fig. 3.1 the smooth rank approximation in [69] has several drawbacks. Specifi-

cally, we explain in more detail the following three limitations of SmoothAP, which come from

the use of the sigmoid function to approximate the Heaviside (step) function for computing the

rank:

Figure 3.8: Limitation of the smooth rank approximation in [69]: contradictory gradient flow
for the positives samples x1 and x2 (in green), vanishing gradient for the negative example x3
(in red), and no guarantees of having an upper bound of LAP.

i Contradictory gradient flow for positives samples: Firstly, we can see on the toy dataset

of Fig. 3.8 that the gradients of the two positive examples (in green) with SmoothAP

have opposite directions. The positive with the lowest rank x1 has a gradient in the good

direction, since it leads to increase x1’s score because the correct ordering is not reached

(the negative instance x3 has a better rank). But the gradient of the positive with the

highest rank x2 is on the wrong direction, since it tends to decrease x2’s score. This is an

undesirable behavior, which comes from the use of the sigmoid in LSmoothAP. In the example

of Fig. 3.8, we can actually show that
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ˆLSmoothAP

ˆs1
= ≠

ˆLSmoothAP

ˆs2

Proof in Appendix A.1.1.

ii Vanishing gradients: Secondly, SmoothAP [69] has vanishing gradients due to its use of the

sigmoid function. This is illustrated on the toy dataset in Fig. 3.8. The negative instance

x3 has a high score s3, but does not receive any gradient, which does not enable it to lower

its score, although it would improve the overall ranking. This is because the score di↵erence

between x3 and x2 is large, i.e. s3≠s2 = 0.13. Similarly, s3≠s1 = 0.14. Consequently, both
s3 ≠ s2 and s3 ≠ s1 fall into the saturation regime of the sigmoid, preventing to propagate

any gradient (see Fig. 3.4c).

iii Finally, LSmoothAP is not an upper bound of LAP. The use of the sigmoid means that

both rank+ and rank≠ can be over or underestimated. If rank+ is overestimated (resp.

underestimated) LSmoothAP underestimates LAP (resp. overestimates). And if rank≠ is

overestimated (resp. underestimated) LSmoothAP overestimates LAP (resp. overestimated).

Therefore, LSmoothAP can be larger or lower than LAP in general. In the example of Fig. 3.8,

we show that LSmoothAP is lower than LAP.

We address those three issues with SupRank:

i Using the true Heaviside (step) function H
+ for rank

+ allows having the expected be-

havior regarding the gradients of positives. When Changing H
+ for rank+ in Fig. 3.9a, we

can see that we fix the problem of opposite gradients for the positive examples x1 and x2

- although the gradient is zero.

ii Using H
≠ for rank

≠ overcomes vanishing gradients. By using H
≠ in Eq. (3.4), we design

a linear function for positive (sj ≠ sk) values, where sj (resp. sk) is the score of a negative

(resp. positive) example - see Fig. 3.4b. We can see in Fig. 3.9b that this change enables to

have gradients in the correct directions for the two positive instances x1 and x2 (tending

to increase their scores), and for the negative instance x3 (tending to decrease its score).

iii LSupAP is an upper bound of LAP. By the proposed design of H
≠ in Eq. (3.4), we have

rank≠

s (k) Ø rank≠(k). Since we do not approximate rank+(k) by keeping the Heaviside

function, it leads to rank+(k)
rank+(k)+rank≠

s (k) Æ
rank+(k)

rank+(k)+rank≠(k) , and therefore LSupAP Ø LAP.

57



3.4. THEORETICAL ANALYSIS AND INTUITIONS.

(a) When replacing H
+ by the Heaviside func-

tion in SmoothAP we stop the unexpected be-
havior of the gradient flow. However, there are
still vanishing gradients.

(b) Our LSupAP has gradients that do not stop
until the correct ranking is achieved.

Figure 3.9: We illustrate the di↵erent steps to build LSupAP. On Fig. 3.9a, we change H
+ to

be the true Heaviside (step) function. On Fig. 3.9b, we replace the sigmoid by H
≠ defined in

Eq. (3.4). Using H
+ and H

≠, LSupAP is an upper bound of LAP.

Overall, LSupAP has all the desired properties : i) A correct gradient flow during training,

ii) No vanishing gradients while the correct ranking is not reached, iii) Being an upper bound

on the AP loss LAP.

3.4.2 Properties of the LDG loss function.

Upper bound on the decomposability gap for AP. To formalize the intuition behind LDG,

we provide a theoretical analysis of the impact on the global ranking of LDG in Eq. (3.7) for

AP. Firstly, we can see that if L
≠

DG = L
+
DG = 0, on each batch, the overall AP and the AP in

batches is null, i.e. DG(◊) = 0 and we get a decomposable AP. In a more general setting, we

show that minimizing LDG on each batch reduces the decomposability gap, hence improving

the decomposability of the AP.

Let’s consider K batches {B
b
}bœ{1:K} of batch size B divided in �+

b positive instances and

�≠

b negative instances w.r.t. the query qi. To give some insight, we assume that the AP of each

batch is one (i.e. APb
i = 1), and give the following upper bound of DGAP:

0 Æ DG Æ 1 ≠
1

qK
b=1 |�+

b |

Q

ca
Kÿ

b=1

|�+
b |ÿ

j=1

j + |�+
1 | + · · · + |�+

b≠1|

j + |�+
1 | + · · · + |�+

b≠1| + |�≠

1 | + · · · + |�≠

b≠1|

R

db (3.18)

This upper bound of the decomposability gap is given in the worst case for the global AP: the

global ranking is built from the juxtaposition of the batches Fig. 3.10. Proof in Appendix A.1.3.
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Figure 3.10: The worst case when computing the global AP would be that each batch is
juxtaposed.

Refined upper bound on the decomposability gap. We can refine this upper bound by intro-

ducing the calibration loss LDG and constraining the scores of positive and negative instances

to be well calibrated. On each batch we define the following quantities E
≠

b = q
jœ�≠

i
1(sj > —)

which are the negative instances that do not respect the constraints and G
≠

b = q
jœ�≠

i
1(sj Æ —)

the negative instances that do. We similarly define E
+
b and G

+
b . We then have the following

upper bound on the decomposability gap :

0 Æ DG Æ 1 ≠
1

qK
b=1 |�+

b |

Q

a
Kÿ

b=1

C G+
bÿ

j=1

j + G
+
1 + · · · + G

+
b≠1

j + G
+
1 + · · · + G

+
b≠1 + E

≠

1 + . . . E
≠

b≠1
(3.19)

+
E+

bÿ

j=1

j + G
+
b + |�+

1 | + · · · + |�+
b≠1|

j + G
+
b + |�+

1 | + · · · + |�+
b≠1| + |�≠

1 | + · · · + |�≠

b≠1|

DR

b

This refined upper bound is tighter than the upper bound of Eq. (3.18). Our new LDG

loss directly optimizes this upper bound (by explicitly optimizing E
≠

b , E
+
b , G

+
b , G

+
b ), making it

tighter, hence improving the decomposability of the AP. We give the proof in Appendix A.1.4.

3.5 Experiments.

3.5.1 Experimental setup.

We evaluate ROADMAP on the following three image retrieval datasets:

Stanford Online Product (SOP) [246] is a standard dataset for Image Retrieval it has two lev-

els of semantic scales, the object Id (fine) and the object category (coarse). It depicts EBay on-
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line objects, with 120053 images of 22634 objects (Id) classified into 12 (coarse) categories (e.g.

bikes, co↵ee makers etc.), see Fig. 3.11. We use the reference train and test splits from [246]. The

dataset can be downloaded at: https://cvgl.stanford.edu/projects/lifted_struct/.

Figure 3.11: Images from Stanford Online Products.

iNaturalist-2018 [29] is a dataset that has been used for image retrieval in recent works [69],

[95]. It depicts animals, plants, mushroom etc. in wildlife, see Fig. 3.12, it has in total 461 939

images and 8142 fine-grained classes (“Species”). We use the standard Image Retrieval splits

from [69]. The dataset can be downloaded at: github.com/visipedia/inat_comp, and the

retrieval splits at: drive.google.com.

CUB-200-2011 [247] contains 11788 images of birds classified into 200 fine-grained classes. We

follow the standard protocol and use the first (resp. last) 100 classes for training (resp. eval-

uation). The dataset can be downloaded at: https://www.vision.caltech.edu/datasets/

cub_200_2011/.

Details of the backbones used. We briefly describe the backbones used throughout out the

experiments.

• ResNet-50 [45] We use the well-known convolutional neural network ResNet-50. We

remove the linear classification layer. We also add a linear projection layer to reduce the

dimension (e.g. from 2048 to 512).
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Figure 3.12: Images from iNaturalist-2018.

• DeiT [47] Recently, transformer models have been introduced for computer vision [47],

[248]. They establish new state-of-the-art performances on computer vision tasks. We

use the DeiT-S from [47] which has fewer parameters than the ResNet-50 (≥ 21 million

for DeiT vs. 25 for ResNet-50). We use the pre-trained version with distillation from [47]

and its implementation in the timm library [249].

Detail on experimental setup. We use the standard data augmentation strategy during train-

ing: images are resized so that their shorter side has a size of 256, we then make a random crop

that has a size between 40 and 256, and aspect ratio between 3/4 and 4/3. This crop is then

resized to 224x224, and flipped horizontally with a 50% chance. During evaluation, images are

resized to 256 and then center cropped to 224.

We use two di↵erent strategy to sample each mini-batch. On CUB and iNaturalist, we choose

a batch size (e.g. 128) and a number of samples per classes (e.g. 4). We then randomly sample

classes (e.g. 32) to construct our batches. For SOP, we use the hard sampling strategy from

[173]. For each pair of category (e.g. bikes and co↵ee makers) we use the preceding sampling

strategy. This sampling technique is used because it yields harder and more informative batches.

The intuition behind this sampling is that it will be harder to discriminate two bikes from one

another, than a bike and a sofa.

Test protocol. Methods are evaluated using the standard recall at k (R@k) and mean average

precision at R [250] (mAP@R) metrics, detailed below.
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Recall@K The Recall@K metrics is often used in the literature. For a single query, the

Recall@K is 1 if a positive instance is in the K nearest neighbors, and 0 otherwise. The

Recall@K is then averaged on all the queries. Researcher use di↵erent values of K for a given

dataset (e.g. 1, 2, 4, 8 on CUB), for details see Eq. (2.3).

mAP@R Recently, the mAP@R has been introduced in [250]. The authors show that this

metric is less noisy and better captures the performance of a model. The mAP@R is a partial

AP, computed on the R first instances retrieved, with R being set to the number of positive

instances wrt. a query. mAP@R is a lower bound of the AP (mAP@R = AP when the correct

ranking is achieved, i.e. mAP@R = AP = 1).

mAP@Ri = 1
R

Rÿ

j=1
P (j), where P (j) =

Y
]

[
precision at j if the jth retrieval is correct

0 otherwise
(3.20)

3.5.2 ROADMAP validation.

Table 3.1: Comparison between ROADMAP and state-of-the-art AP ranking based methods.

SOP iNaturalist

Method R@1 mAP@R R@1 mAP@R

Fast-AP [173] 77.8 50.5 59.9 24.0
SoftBin-AP [67] 79.7 52.7 63.6 25.4
BlackBox-AP [68] 80.0 53.1 52.3 15.2
Smooth-AP [69] 80.9 54.3 67.3 26.5

ROADMAP 81.9 55.7 71.8 29.5

In this section, we run all experiments under the same settings, and use publicly available

implementations of all baselines. We use a ResNet-50 backbone with average pooling, layer

normalization without a�ne parameters and a projection head that reduces the dimension from

2048 to 512. We use a batch size of 256 by sampling 4 images per class and the hierarchical

sampling of [173] for SOP, with resolution 224 ◊ 224, standard data augmentation (random

resize crop, horizontal flipping), the Adam optimizer (with learning rate of 5 · 10≠5 on SOP and

1 · 10≠5 on iNaturalist, with cosine decay) and train for 100 epochs.
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3.5.2.1 Comparison to AP approximations.

In Tab. 3.1, we compare ROADMAP to AP loss approximations including soft-binning

approaches Fast-AP [173] and SoftBin-AP [67], the generic solver BlackBox-AP [68], and the

smooth rank approximation [69]. We observe that ROADMAP outperforms all the current

AP approximations by a large margin. The gains are especially pronounced on the large-scale

dataset iNaturalist.

3.5.2.2 Analysis on decomposability.

The decomposability gap depends on the batch size Eq. (3.6). To illustrate this, we monitor

on Fig. 3.13 the relative improvement when adding L
ú

DG to LSupAP as the batch size decreases.

We can see that the relative improvement becomes larger as the batch size gets smaller. This

confirms our intuition that the decomposability loss L
ú

DG has a stronger e↵ect on smaller batch

sizes, for which the AP estimation is noisier and DG larger. This is critical on the large-scale

dataset iNaturalist, where the batch AP on usual batch sizes is a very poor approximation of

the global AP.
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Figure 3.13: Relative increase of mAP@R vs. batch size when adding LDG to LSupAP.

In Tab. 3.2 we compare ROADMAP to the cross-batch memory [73] (XBM) which is used

to reduce the gap between batch-AP and global AP. We use XBM with a batch size of 128 and

store all the dataset, and use the setup described previously otherwise. ROADMAP outperforms

XBM both on SOP and iNaturalist, with gains more pronounced on iNaturalist with +12.5pt

R@1 and +11 mAP@R. L
ú

DG allows us to train models even with smaller batches.
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Table 3.2: Comparison between XBM [73] and ROADMAP.

SOP iNaturalist

Method R@1 mAP@R R@1 mAP@R

XBM [73] 80.6 54.9 59.3 18.5
ROADMAP 81.9 55.7 71.8 29.5

3.5.2.3 Ablation study.

To investigate more in-depth the impact of the two components of our framework, we

perform ablation studies in Tab. 3.3. We show the improvements against Smooth-AP [69]

and Smooth-R@k [70] when replacing the sigmoid by SupRank Eq. (3.10), and the use of

LDG Eq. (3.7) or L
ú

DG Eq. (3.8). We can see that both LSupAP and LSup-R@k consistently improve

performances over the baselines, +0.5pt mAP@R on SOP and +1pt mAP@R on iNaturalist

for both Sup-AP and Sup-R@k. Both LDG and L
ú

DG improve over the smooth surrogates, with

strong gains on iNaturalist, e.g. L
ú

DG improves by +2.9pt R@1 over Sup-AP and +3.7pt R@1

over Sup-R@k. This is because the batch vs. dataset size ratio B
N is tiny (≥ 8 · 10≠4

π 1),
making the decomposability gap in Eq. (3.6) huge. On SOP LDG and L

ú

DG work similarly,

however on the large scale iNaturalist L
ú

DG performs better than LDG, as discussed in Sec. 3.2.3

this could come from the fact that the margin in L
ú

DG (i.e. the distance to the proxies) are

learnable. In the following, we choose to keep only L
ú

DG.

Table 3.3: Ablation study of the two components of our framework.

SOP iNaturalist

Method rank DG R@1 mAP@R R@1 mAP@R

Smooth-AP sigmoid 7 80.9 54.3 67.3 26.5
Sup-AP SupRank 7 81.2 54.8 68.9 27.5

ROADMAP SupRank
LDG 81.7 55.7 69.1 27.6
L

ú

DG 81.9 55.7 71.8 29.5

Smooth-R@k sigmoid 7 80.5 53.7 66.4 25.5
Sup-R@k SupRank 7 80.7 54.2 68.2 26.4

ROD-R@k SupRank
LDG 82.4 56.6 69.3 27.0
L

ú

DG 81.9 55.8 71.9 29.8
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Figure 3.14: Robustness to hyperparameters on iNaturalist.

3.5.2.4 ROADMAP hyperparameters.

We demonstrate the robustness of our framework to hyperparameters in Fig. 3.14. Firstly,

Fig. 3.14a illustrates the complementarity between the two terms of LROADMAP. For 0 < ⁄ < 1,
LROADMAP outperforms both LSupAP and L

ú

DG. While we use ⁄ = 0.1 in our experiments,

hyperparameter tuning could yield better results, e.g. with ⁄ = 0.3 LROADMAP has 72.1 R@1

vs. 71.8 R@1 reported in Tab. 3.1. Secondly, Fig. 3.14b shows the influence of the slope fl that

controls the linear regime in H
≠. As shown in Fig. 3.14b, the improvement is important and

stable in [10, 100]. Note that fl > 1 already improves the results compared to fl = 0 in [69].

There is a decrease when fl ∫ 103, probably due to the high gradient that takes over the signal

for correctly ranked samples.

3.5.3 State-of-the-art comparison.

In this section, we compare our AP approximation method, ROADMAP, to state-of-the-art

methods, on SOP, CUB, and iNaturalist. We use ROADMAP with a memory [73] to virtu-

ally increase the batch size. Note that using batch memory is less computationally expensive

than methods such as [70] which trade computational time for memory footprint by using

two forward passes. We apply ROADMAP on both a convolutional backbone, ResNet-50 with

GeM pooling [255] and layer normalization, and Vision transformer models [248], DeiT-S [47]

(Imagenet-1k pre-trained as in [254]) and ViT-B (Imagenet21k pre-trained as in [70]). For con-

volutional backbones, we choose to keep the standard images of size 224◊224 for both training

and inference on SOP and iNaturalist, and use more recent settings [157], [164] for CUB and

use images of size 256 ◊ 256. Vision transformers experiments use images of size 224 ◊ 224.
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Table 3.4: Comparison of state-of-the-art performances on R@K from the literature on SOP,
CUB, and iNaturalist with the proposed ROADMAP. Except for the ViT categories, all methods
rely on a standard convolutional backbone (generally ResNet-50).

SOP CUB iNaturalist
Method dim 1 10 100 1 2 4 8 1 4 16 32

M
et
ri
c
le
ar
n
in
g Triplet SH [65] 512 72.7 86.2 93.8 63.6 74.4 83.1 90.0 58.1 75.5 86.8 90.7

MS [160] 512 78.2 90.5 96.0 65.7 77.0 86.3 91.2 - - - -
SEC [251] 512 78.7 90.8 96.6 68.8 79.4 87.2 92.5 - - - -
HORDE [252] 512 80.1 91.3 96.2 66.8 77.4 85.1 91.0 - - - -
XBM [73] 128 80.6 91.6 96.2 65.8 75.9 84.0 89.9 - - - -
Triplet SCT [157] 512 81.9 92.6 96.8 57.7 69.8 79.6 87.0 - - - -

C
la
ss
ifi
ca
ti
on

ProxyNCA [161] 512 73.7 - - 49.2 61.9 67.9 72.4 61.6 77.4 87.0 90.6
ProxyGML [243] 512 78.0 90.6 96.2 66.6 77.6 86.4 - - - - -
NSoftmax [66] 512 78.2 90.6 96.2 61.3 73.9 83.5 90.0 - - - -
NSoftmax [66] 2048 79.5 91.5 96.7 65.3 76.7 85.4 91.8 - - - -
Cross-Entropy [253] 2048 81.1 91.7 96.3 69.2 79.2 86.9 91.6 - - - -
ProxyNCA++ [164] 512 80.7 92.0 96.7 69.0 79.8 87.3 92.7 - - - -
ProxyNCA++ [164] 2048 81.4 92.4 96.9 72.2 82.0 89.2 93.5 - - - -

R
an

ki
n
g

FastAP [173] 512 76.4 89.0 95.1 - - - - 60.6 77.0 87.2 90.6
BlackBox [68] 512 78.6 90.5 96.0 64.0 75.3 84.1 90.6 62.9 79.4 88.7 91.7
SmoothAP [69] 512 80.1 91.5 96.6 - - - - 67.2 81.8 90.3 93.1
R@k [70] 512 82.8 92.9 97.0 - - - - 71.2 84.0 91.3 93.6
R@k + SiMix [70] 512 82.1 92.8 97.0 - - - - 71.8 84.7 91.9 94.3
ROADMAP (ours) 512 83.3 93.6 97.4 69.4 79 4 87.2 92.1 73.1 85.7 92.7 94.8

D
ei

T
-S IRTR [254] 384 84.2 93.7 97.3 76.6 85.0 91.1 94.3 - - - -

ROADMAP (ours) 384 85.2 94.5 97.9 77.6 86.2 91.6 95.0 74.7 86.9 93.4 95.4

V
iT

-B R@k + SiMix [70] 512 88.0 96.1 98.6 - - - - 83.9 92.1 95.9 97.2
ROADMAP (ours) 512 88.4 96.4 98.7 86.8 91.7 94.6 96.5 85.1 93.0 96.6 97.7

In Tab. 3.4, using convolutional backbones, ROADMAP outperforms most state-of-the-art

methods when evaluated at di↵erent (standard) R@k. As ROADMAP optimizes directly the

evaluation metrics, it outperforms metric learning and classification-based methods, e.g. +1.4pt

R@1 on SOP compared to Triplet SCT [157] or +1.9pt R@1 on SOP vs. ProxyNCA++ [164].

ROADMAP also outperforms R@k [70] with +1.2pt R@1 on SOP and +1.3pt R@1 on iNatural-

ist. This is impressive as R@k [70] uses a strong setup, i.e. a batch size of 4096 and Similarity

mixup. On the small-scale dataset CUB, our method is competitive with methods such as

ProxyNCA++ with the same embedding size of 512.
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Finally, we show that ROADMAP also improves Vision Transformers for image retrieval.

With DeiT-S, ROADMAP outperforms [254] on both SOP and CUB by +1pt R@1, this again

shows the interest of directly optimizing the metrics rather than the pair loss of [73] used

in [254]. With ViT-B, ROADMAP outperforms [70] by +0.4pt R@1 and +1.2pt R@1 on SOP

and iNaturalist, respectively. We attribute this to the fact that our loss is an actual upper

bound of the metric, in addition to our decomposability loss.

Preliminary results on Landmarks retrieval. We show in Tab. 3.5 preliminary experiments

to evaluate ROADMAP on ROxford and RParis [255], by training our model on the SfM-120k

dataset and using the standard GitHub code for evaluation1. We can see that ROADMAP is

significantly better than [254] with the DeiT-S [47] on ROxford and RParis medium protocol,

and has similar performances for RParis hard protocol. This highlights the relevance of using

ROADMAP instead of the contrastive loss used in [254].

Table 3.5: Comparison of ROADMAP vs IRT [254] on ROxford and RParis [255]. Models are
DeiT-S [47], ROADMAP is trained with a batch size of 128.

Method
ROxford RParis

Medium Hard Medium Hard

IRT [254] 34.5 15.8 65.8 42.0
ROADMAP (ours) 38.9 20.7 67.5 42.3

Results on Coexya’s data. In this section we apply ROADMAP to one of Coexya’s mono-

label dataset, Shapes that 20 classes and 30k images. We evaluate in two di↵erent settings, an

open-set one, similarly to the standard image retrieval setting, and a closed-setting. We can

see that ROADMAP outperforms both the baseline (classification based) and Smooth-AP on

AP evaluation.

Table 3.6: Comparison of ROADMAP vs. baselines on Coexya’s Shapes. Models are DeiT-S [47].

Method
Open-set Closed-set

R@1 AP R@1 AP

Baseline 60.0 36.0 63.0 25.0
Smooth-AP [69] 63.0 49.0 64.6 35.2
ROADMAP (ours) 65.0 52.0 64.0 37.9

1https://github.com/filipradenovic/cnnimageretrieval-pytorch
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3.5.4 Qualitative results.

As a qualitative assessment, we show in Fig. 3.15 some results of ROADMAP on iNaturalist.

We show the queries (in purple) and the 4 most similar retrieved images (in green). We can

appreciate the semantic quality of the retrieval.

Fig. 3.16 shows another qualitative assessment on iNaturalist, where ROADMAP corrects

some failing cases of the SmoothAP baseline.

Figure 3.15: Results on iNaturalist: a query (purple) with the 4 most similar retrieved images
(green).

Figure 3.16: Results on iNaturalist: a query (purple) with the 9 most similar retrieved images,
green for relevant images, red otherwise. Top line results with ROADMAP. Bottom line results
with SmoothAP.
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3.6 Conclusion.

In this chapter, we have introduced a general framework for rank losses optimization. It

tackles two issues of rank losses optimization: 1) non-di↵erentiability using smooth and upper

bound rank approximation, 2) non-decomposability using an additional objective; providing

a robust training for image retrieval models. We apply our framework to fine-grained image

retrieval, by optimizing both AP and R@k. We show that using our framework outperforms

other rank loss surrogates on several standard fine-grained image retrieval benchmarks. We

also show that our framework sets state-of-the-art results for fine-grained image retrieval.

Fine-grained retrieval is the main task of image retrieval. However, models learned with

e.g. ROADMAP lack robustness wrt. the mistakes that they commit and what they retrieve

once the fine-grained instances are retrieved. This is illustrated on Fig. 3.17 in a failure where

the model trained with ROADMAP (indicated as the “baseline”) commits severe mistakes.

Figure 3.17: Examples of a failure case from a fine-grained model trained with ROADMAP vs.
a mistake severity aware model, HAPPIER.

Our framework is general and can be used to optimized other metrics, for instance metrics

that leverage hierarchical information to learn robust ranking. This will be illustrated in the

next chapter with an extension of average precision to hierarchical rankings, and the NDCG.
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Chapter 4

Hierarchical Image Retrieval for Robust
Ranking

We have seen in the previous chapter how to optimize ranking based metrics commonly

used to evaluate image retrieval. Yet, those metrics are limited to binary labels and do not take

into account the mistake severity. In this chapter, we leverage hierarchical relations between

labels to i) integrate errors’ importance during training and ii) better evaluate rankings’ robust-

ness. We introduce a new hierarchical H-AP metric that extends the AP beyond binary labels.

We then show how to use the ROADMAP framework introduced previously to optimize H-AP

(HAPPIER) and NDCG (ROD-NDCG). We show that building a hierarchy of labels is a realistic

goal by creating the first hierarchical landmarks retrieval dataset. We use a semi-automatic

pipeline to extend with hierarchical labels the large scale Google Landmarks v2 dataset, pub-

licly available at github.com/cvdfoundation/google-landmark. Extensive experiments on 7

datasets show that HAPPIER and ROD-NDCG significantly outperform state-of-the-art hierar-

chical retrieval algorithms, while being also on par with the most e↵ective approaches when

evaluating fine-grained ranking performance. Finally, we show that HAPPIER leads to a better

organization of the embedding space and prevents most severe failure cases of non-hierarchical

methods. Our code is publicly available at github.com/elias-ramzi/HAPPIER.
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4.1 Introduction.

We have seen in the previous chapter that ranking metrics used to evaluate image retrieval,

e.g. AP and R@k are not di↵erentiable and non-decomposable, leading us to introduce a

framework to optimize them. However, these metrics are only defined for binary (ü/°) labels,
in practice relying on fine-grained labels : an image is negative as soon as it has not the same

fine-grained label as the query. Binary metrics are by design unable to take into account the

mistake severity of a ranking. On Fig. 4.1, some negative instances are “less negative” than

others, e.g. given the “Brown Bear” query, “Polar bear” is more relevant than “Butterfly”.

However, AP is 0.9 for both the top and bottom rankings. Consequently, training on binary

metrics (e.g. AP or R@k) develops no incentive to produce ranking such as the top row, and

often produces rankings similar to the bottom one. This leads methods that optimize this

metrics to lack robustness: they tend to make severe errors when they make errors.

Query image

HAPPIER

rank 1 rank 2 rank 3

. Baseline

rank 4 rank 5 rank 6

Figure 4.1: Proposed hierarchical retrieval framework for pertinent image retrieval. Standard
ranking metrics based on binary labels, e.g. Average Precision (AP), assign the same score to
the bottom and top row rankings (0.9). We introduce the H-AP metric based on non-binary
labels, that takes into account mistakes’ severity. H-AP assigns a smaller score to the bottom
row (0.68) than the top one (0.94). HAPPIER maximizes H-AP during training and thus
explicitly supports to learn rankings similar to the top one, in contrast to binary ranking losses.

Hierarchical image retrieval can be used to mitigate this issue by taking into account non-

binary similarities between labels by learning pairwise graded “relevance” scores. We introduce

the hierarchical average precision, H-AP, a new metric that extends the AP to non-binary

settings. Using our optimization framework ROADMAP, we show how to optimize graded AP

derivatives such as H-AP, with HAPPIER, and the well known NDCG, leading to competitive
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results for fine-grained image retrieval metrics, while outperforming by significant margins both

fine-grained methods and hierarchical baselines when considering hierarchical metrics.

First, we define a new Hierarchical AP metric (H-AP) that leverages the hierarchical tree

between concepts and enables a fine weighting between errors in rankings. As shown in Fig. 4.1,

H-AP assigns a larger score (0.94) to the top ranking than to the bottom one (0.68). We show

that H-AP provides a consistent generalization of AP for the non-binary setting. We also

introduce our HAPPIERF variant, giving more weights to fine-grained levels of the hierarchy.

Since H-AP and NDCG, like AP, are non-di↵erentiable metrics, we then use the ROADMAP

framework introduced in Chapter 3 to directly optimize H-AP with HAPPIER and NDCG

with ROD-NDCG by gradient descent. Similarly to ROADMAP and ROD-R@k in Chapter 3,

optimizing H-AP and NDCG with the ROADMAP framework leads to robust optimization with

good theoretical properties, in contrast with [79], [80] discussed in Sec. 2.3.2. Furthermore,

by optimizing principled metrics, HAPPIER and ROD-NDCG outperforms other methods for

hierarchical image retrieval [81], [82] discussed in Sec. 2.3.3, that are extended proxy and triplet-

based losses.

Finally, we introduce the first hierarchical landmarks retrieval dataset, H-GLDv2, extend-

ing the well-known Google Landmarks v2 landmarks retrieval (GLDv2) dataset [28]. While

landmarks retrieval has been one of the most popular domain in image retrieval, it was lacking

until now a hierarchical dataset. H-GLDv2 is a large scale dataset with 1.4m images and three

levels of hierarchies: including 100k unique landmarks, 78 super-categories and 2 final labels.

These new labels are publicly available at github.com/cvdfoundation/google-landmark.

We validate HAPPIER and ROD-NDCG on seven IR datasets, including three standard

datasets (Stanford Online Products [246] and iNaturalist-base/full [29]), three recent hierarchi-

cal datasets (DyML [81]), and our novel H-GLDv2. We show that, when evaluating on hierar-

chical metrics (e.g. H-AP), our hierarchical methods outperform state-of-the-art methods for

fine-grained ranking [65], [66], [95], [164], the baselines and the latest hierarchical methods [81],

[82], and only slightly under-performs vs. state-of-the-art IR methods at the fine-grained level

(e.g. AP, R@1). HAPPIERF performs on par on fine-grained metrics while still outperforming

fine-grained methods on hierarchical metrics.
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Vehicles

Cars Pickup Bus

Mini PriusLada

Prius #4

Lada #2Lada #1 Lada #9

Query Image: Lada #2

Figure 4.2: HAPPIER leverages a hierarchical tree representing the semantic similarities between
concepts in (a) to introduce a new hierarchical metric, H-AP in Eq. (4.3), see (b). H-AP exploits
the hierarchy to weight rankings’ inversion: given the query image of a “Lada #2”, H-AP
penalizes an inversion with a “Lada #9” less than with a “Prius #4”. To directly train models
with H-AP, we carefully study the structure of the problem and introduce the LSup-H-AP loss
in Eq. (4.10), which provides a smooth upper bound of LH-AP, see (c). We also train HAPPIER
with the L

ú

DG to enforce the partial ordering in stochastic optimization to mach the global ones.

4.2 Hierarchical Image Retrieval.

Standard metrics (e.g. AP or R@k) are only defined for binary labels: an image is either

a negative or a positive for the query, in practice they are defined using fine-grained labels.

These metrics are by design unable to take into account the mistake severity. To mitigate

this issue, we propose to optimize a new ranking-based metric, H-AP introduced in Sec. 4.2.2,

that extends AP beyond binary labels, and the standard NDCG in Sec. 4.2.4. The Hierarchical

Average Precision, H-AP in Sec. 4.2.2, leverages a hierarchical tree (Fig. 4.2a) of labels. It is

based on the hierarchical rank, H-rank, and evaluates rankings so that more relevant instances

are ranked before less relevant ones (Fig. 4.2b). We then show how to directly optimize H-AP

and NDCG with SGD using HAPPIER Sec. 4.2.3 and ROD-NDCG Sec. 4.2.4 using the framework

presented in Chapter 3.
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4.2.1 Additional training context.

We define in this section additional notations to Sec. 3.2.1 that we use in this chapter.

We assume that we have access to a hierarchical tree defining semantic relationships between

concepts, as in Fig. 4.2a. For a query q, we partition the set of retrieved instances into L + 1
disjoint subsets

Ó
�(l)

Ô

lœJ0;LK
. �(L) is the subset of the most similar instances to the query (i.e.

fine-grained level): for L = 3 and a “Lada #2” query (purple), �(3) are the images of the same

“Lada #2” (green) in Fig. 4.2a. The set �(l) for l < L contains instances with smaller relevance

with respect to the query: �(2) in Fig. 4.2a is the set of “Lada” that are not “Lada #2” (blue)

and �(1) is the set of “Cars” that are not “Lada” (orange). We also define �≠ := �(0), as the set

of negative instances that share no common semantics with the query, i.e. the set of vehicles

that are not “Cars” (in red) in Fig. 4.2a and �+ = tL
l=1 �(l). Given a query q, we define the

relevance of k œ �(l), rel(k) := rel(xk, q). For a query q œ �, we aim to order all xj œ � so that

more relevant (i.e. similar) instances are ranked before less relevant instances.

4.2.2 Hierarchical Average Precision.

As seen before, Average Precision (AP) is one of the most common metric in image retrieval,

it is therefore natural to seek an extension to the hierarchical setting. Let us recall the definition

of the average precision (AP) and the rank:

AP = 1
|�+|

ÿ

kœ�+

rank+(k)
rank(k) , with

Y
]

[
rank(k) = 1 + q

jœ� H(sj ≠ sk)
rank+(k) = 1 + q

jœ�+ H(sj ≠ sk)
(4.1)

4.2.2.1 Extending AP to hierarchical image retrieval.

We propose an extension of AP that leverages non-binary labels. To do so, we extend the

concept of rank+ to the hierarchical case with the concept of hierarchical rank, H-rank:

H-rank(k) = rel(k) +
ÿ

jœ�+
min(rel(k), rel(j)) · H(sj ≠ sk) . (4.2)

Intuitively, min(rel(k), rel(j)) corresponds to seeking the closest ancestor shared by instances

k and j with the query in the hierarchical tree. As illustrated in Fig. 4.3, H-rank induces a

smoother penalization for instances that do not share the same fine-grained label as the query

but still share some coarser semantics, which is not the case for the usual binary rank+.
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Query Image:  
Lada #2

Figure 4.3: Given a “Lada #2” query, the top inversion is less severe than the bottom one.
Indeed, on the top row, instance 1 is semantically closer to the query – as it is a “Lada”– than
instance 3 on the bottom row. Indeed, instance 3’s closest common ancestor with the query,
“Cars”, is farther in the hierarchical tree (see Fig. 4.2a). Because of that, H-rank(2) is greater
on the top row (5/3) than on the bottom row (4/3), leading to a greater H-AP in Fig. 4.2b for
the top row.

We detail in Fig. 4.5 how the H-rank in Eq. (4.2) is computed in the example from Fig. 4.2b.

Given a “Lada #2” query, we set the relevances as follows and illustrated on Sec. 4.2.2.1:

1. if k œ �(3) (i.e. k is also a “Lada #2”), rel(k) = 1.
2. if k œ �(2) (i.e. k is another model of “Lada”), rel(k) = 2/3.
3. if k œ �(1) (k is a “Car”), rel(k) = 1/3.
4. Relevance of negatives (other vehicles) is set to 0.

Vehicles

Cars

Lada

Lada #1

Query 1 . . . 1

2/3 . . . 2/3

. . . 1/3 1/3

0

0 0 . . .

Figure 4.4: Toy relevances for the hierarchical tree of Fig. 4.2a.

In this instance, H-rank(2) = 4/3 because rel(2) = 1 and min(rel(1), rel(2)) = rel(1) = 1/3.
Here, the closest common ancestor in the hierarchical tree shared by the query and instances

1 and 2 is “Cars”. For binary labels, we would have rank+(2) = 1; this would not take into
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Query Image:  
Lada #2

Figure 4.5: H-rank for each retrieval results given a “Lada #2” query and the hierarchical tree
of Fig. 4.2a.

account the semantic similarity between the query and the instance with rank 1.
From H-rank in Eq. (4.2), we define the Hierarchical Average Precision, H-AP, by replacing

rank+ of AP:

H-AP = 1
q

kœ�+ rel(k)
ÿ

kœ�+

H-rank(k)
rank(k) (4.3)

Eq. (4.3) extends the AP to non-binary labels. We replace rank+ by our hierarchical rank

H-rank and the normalization term |�+
| is replaced by

q
kœ�+ rel(k), which both represent the

“sum of positives”.

Normalization constant for H-AP. When all instances are perfectly ranked, all instances j

that are ranked before instance k (sj Ø sk) have a relevance that is higher or equal than k’s,

i.e. rel(j) Ø rel(k) and min(rel(j), rel(k)) = rel(k). So, for each instance k:

H-rank(k) = rel(k) +
ÿ

jœ�+
min(rel(k), rel(j)) · H(sj ≠ sk)

= rel(k) +
ÿ

jœ�+
rel(k) · H(sj ≠ sk)

= rel(k) ·

Q

a1 +
ÿ

jœ�+
H(sj ≠ sk)

R

b = rel(k) · rank(k)

The total sum
q

kœ�+
H-rank(k)

rank(k) = q
kœ�+ rel(k). Therefore, we need to normalize by

q
kœ�+ rel(k)

(to constrain H-AP between 0 and 1). This results in the definition of H-AP from Eq. (4.3).

H-AP extends the desirable properties of the AP. It evaluates the quality of a ranking by:
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1. penalizing inversions of instances that are not ranked in decreasing order of relevances

with respect to the query.

2. giving stronger emphasis to inversions that occur at the top of the ranking.

H-AP is a consistent generalization of AP. H-AP is equivalent to AP in a binary setting

(L = 1). Indeed, the relevance function can be set to 1 positive instances and 0 otherwise

in the binary case, without loss of generality. Therefore, H-rank(k) = 1 + q
jœ�+ H(sj ≠ sk)

which is the same definition as rank+ in AP. Furthermore, the normalization constant of H-AP,
q

kœ�+ rel(k), is equal to the number of fine-grained instances in the binary setting, i.e. |�+
|.

This means that H-AP = AP in this case.

Link with recall and precision. One other property of AP is that it can be interpreted as

the area under the precision-recall curve. H-AP from Eq. (4.3) can also be interpreted as the

area under a hierarchical-precision-recall curve by defining a Hierarchical Recall (H-R@k) and

a Hierarchical Precision (H-P@k) as:

H-R@k =
qk

j=1 rel(j)
q

jœ�+ rel(j) (4.4)

H-P@k =
qk

j=1 min(rel(j), rel(k))
k · rel(k) (4.5)

So that H-AP can be re-written as:

H-AP =
|�|ÿ

k=1
(H-R@[k] ≠ H-R@[k-1]) · H-P@k (4.6)

Eq. (4.6) recovers Eq. (4.3), meaning that H-AP generalizes this property of AP beyond

binary labels.

H-R@k is also a consistent generalization of R@k, indeed using a binary relevance we have:

H-R@k =
qk

j=1 rel(j)
q

jœ�+ rel(j) =
qk

j=1 1(k œ �+)
q

jœ�+ 1(k œ �+) = # number of positive before k

|�+|
= R@k

Finally, H-P@k is also a consistent generalization of P@k:

H-P@k =
qk

j=1 min(rel(j), rel(k))
k · rel(k) = # number of positive before k

k
= P@k
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4.2.2.2 Relevance function design.

Base relevance for H-AP. The relevance rel(k) defines how “similar” an instance k œ �(l)

is to the query q [197]. While rel(k) might be given in some Information Retrieval datasets

[256], [257], in our case we define it based on the hierarchical tree. We want to enforce the

constraint that the relevance decreases when the closest common ancestor between the query

and an instance is at a lower level in the hierarchical tree, i.e. rel(k) > rel(kÕ) for k œ �(l),

k
Õ
œ �(lÕ) and l > l

Õ. To do so, we assign a total weight of (l/L)– to each semantic level l, where

– œ R+ controls the decrease rate of similarity in the tree. For example, for L = 3 and – = 1,
the total weights for each level are 1, 2

3 ,
1
3 and 0. The instance relevance rel(k) is normalized

by the cardinal of �(l):

rel(k) = (l/L)–

|�(l)|
if k œ �(l) (4.7)

We set – = 1 in Eq. (4.7) for the H-AP metric and in our main experiments. Setting –

to larger values supports better performances on fine-grained levels, as their relevances will

relatively increase. This variant is denoted HAPPIERF and discussed in Sec. 4.4.

Other definitions fulfilling the decreasing similarity behavior in the tree are possible. An

interesting option for the relevance enables to recover a weighted sum of AP, denoted as
q

wAP := qL
l=1 wl · AP(l) [96], i.e. the weighted sum of AP is a particular case of H-AP

and detailed below in Property 1.

Link between H-AP and the weighted average of AP. Let us define the AP for the semantic

level l Ø 1 as the binary AP with the set of positives being all instances that belong to the

same level, i.e. �+,l = tL
q=l �(q):

AP(l) = 1
|�+,l|

ÿ

kœ�+,l

rank+,l(k)
rank(k) , rank+,l(k) = 1 +

ÿ

jœ�+,l

H(sj ≠ sk) (4.8)

Property 1 For any relevance function rel(k) = ql
p=1

wp

|�+,q |
, k œ �(l), with positive

weights {wl}lœJ1;LK such that
qL

l=1 wl = 1:

H-AP =
Lÿ

l=1
wl · AP

(l) (4.9)

i.e. H-AP is equal to the weighted average of the AP at all semantic levels.

We give the proof in annex Appendix B.1.
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Application to trademark logo retrieval. Trademarked logos are multi-label images, i.e. mul-

tiple di↵erent concepts can occur on an image. These concepts follow the Vienna classifica-

tion1, a system that classifies the figurative elements of trademarked logos. Furthermore, the

Vienna classification is also a hierarchical classification. For instance Category 1 groups all“CE-

LESTIAL BODIES, NATURAL PHENOMENA, GEOGRAPHICAL MAPS”, which is further

divided in “STARS, COMETS”, “SUN” etc. finally the fine-grained categories from “STARS,

COMETS” are “One star”, “Concentric stars” etc.. To adapt the relevance of the H-AP to

trademark logo retrieval we want to take into account both the number of concepts matching

between two images and the proximity of those labels.

We consider two images q and k that are annotated with a set of label {y
1
q , . . . , y

n
q } and

{y
1
k, . . . , y

n
k }. We then use the notion of “lowest common ancestor” (LCA) which is a distance

in the hierarchical tree. The lower the LCA, the closest two labels are. For instance the LCA

between two “Lada # 1” is 0, between a “Lada #1” and “Lada #2” is 1, between a “Lada #1”

and “Cars” that are not “Lada” is 2, etc.
We then define 0 Æ rel(q, k) Æ 1 as follows:

Algorithm 1 Computation of Coexya’s relevance.

input : q with labels {y
1
q , . . . , y

n
q }. k with labels {y

1
k, . . . , y

m
k }. L the number of hierarchical

levels
output: 0 Æ rel(q, k) Æ 1
rel(q, k) = 0
for y

i
q do

Select l
ú

k = L ≠ minyi
k
LCA(yi

q, y
i
k)

rel(q, k) += lúk
n·L

end

This relevance function computes the sum for each label of an individual relevance computed

with Vienna classification’s hierarchical tree.

4.2.3 Direct optimization of H-AP.

H-AP has the same drawbacks as other ranking loss when it comes to optimization. It is

neither di↵erentiable nor decomposable. To optimize deep models with this metric, we follow

the framework presented in Chapter 3. We first define our surrogate loss using SupRank to

optimize H-AP:

1Vienna classification: https://nivilo.wipo.int/vienna9/index.htm?lang=EN
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LSup-H-AP(◊) = 1 ≠
1

M

Mÿ

i=1

1
q

kœ�+
i

rel(k)
ÿ

kœ�+
i

H-rank(k)
rank+(k) + rank≠

s (k) (4.10)

Note that in the hierarchical case rank≠

s (k) is the number of instances of relevances < rel(k)
meaning that it may contain images that are similar to some extent to the query. Finally,

our ranking loss, Hierarchical Average Precision training for Pertinent ImagE Retrieval (HAP-

PIER), is obtained by adding the decomposability constraint L
ú

DG:

LHAPPIER(◊) = (1 ≠ ⁄) · LSup-H-AP(◊) + ⁄ · L
ú

DG(◊) (4.11)

4.2.4 Application to the NDCG.

Although studying the extension of AP to the hierarchical setting with H-AP is natural

because AP is one of the most common metric in image retrieval, we propose to study the

NDCG as well. The NDCG [143], [144] is one of the most common metric in information

retrieval. The NDCG, discussed in Eq. (2.11), uses a relevance that can be graded:

DCGi =
ÿ

kœ�+
i

rel(k)
log2(1 + rank+(k) + rank≠(k))

iDCGi = max
rank

DCGi

NDCG = 1
M

Mÿ

i=1

DCGi

iDCGi
(4.12)

The DCG decreases the overall score brought by one instance when its ranking increases.

When the perfect ranking is achieved DCG = iDCG thus NDCG = 1. We choose a relevance

function from the information retrieval community for the NDCG: rel(k) = 2l
≠ 1, if k œ

�(l). The exponentiation is a standard procedure [144] as it allows putting more emphasis on

instances of higher relevance. We then use our SupRank surrogate to approximate the NDCG:

DCGi,s =
ÿ

kœ�+
i

rel(k)
log2(1 + rank+(k) + rank≠

s (k)) (4.13)

We then define the LSup-NDCG loss as:

LSup-NDCG(◊) = 1 ≠
1

M

Mÿ

i=1

DCGi,s

iDCGi
(4.14)
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Note that, once again, our surrogate loss, LSup-NDCG is an upper bound on the true loss

1 ≠ NDCG. Indeed, rank≠

s (k) > rank≠(k) so DCGi,s < DCGi. Finally, our training loss,

including the decomposability constraint, is:

LROD-NDCG(◊) = (1 ≠ ⁄) · LSup-NDCG(◊) + ⁄ · L
ú

DG(◊) (4.15)

4.3 Hierarchical Landmark dataset.

Figure 4.6: Image taken from [28]. Place de la Concorde – Significant scale changes, historical
photographs and paintings. The dataset can be explored with gld-v2/web/index.html.

As stated in Sec. 4.2.1, in this chapter, we assume that we have access to hierarchical labels.

In this section, we show how to create a hierarchy in practice.

To start, hierarchical trees are available for many datasets, such as CUB-200-2011 [247],

Cars196 [258], InShop [259], Stanford Online Products [246] composed of 22634 objects (Id)

classified into 12 (coarse) categories (e.g. bikes, co↵ee makers etc.), and notably large-scale

ones such as iNaturalist [29], the three DyML datasets [81] and ImageNet [25]. Coarse labels

are also less di�cult to obtain than fine-grained ones, since hierarchical relations can be semi-

automatically obtained by grouping fine-grained labels. This was previously done by [195] or

by using the large lexical database WordNet [78] e.g. for ImageNet in [25] and for the SUN
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database in [260].

Whereas human-made and natural landmarks are one of the most popular domains for

image retrieval [28], [255], [261]–[263], there is no prior hierarchical landmark dataset. Google

Landmarks Dataset v2 (GLDv2) is the largest and most diverse landmark dataset [28]. It is

annotated at a fine-grained level for specific monument, e.g. “Place de la Concorde” on Fig. 4.6.

It features diverse points of view, taken from possibly very di↵erent times. Its original version

consists of over 5M images and 200k distinct instance labels, it was subsequently “cleaned”

[264], resulting in a dataset of 1.5M images and 80k distinct instance labels.

In this chapter, we rely on coarse labels that can be found on Wikimedia Commons2 to

create a hierarchical extension of the GLDv2 dataset, H-GLDv2. It is the first of its kind

hierarchical landmark dataset. H-GLDv2 is a large scale dataset with 1.4m images and three

levels of hierarchies: including 100k unique landmarks, 78 super-categories and 2 final labels.

The labels are publicly available at github.com/cvdfoundation/google-landmark.

4.3.1 Scraping Wikimedia Commons.

The landmarks from GLDv2 are sourced from Wikimedia Commons, the world’s largest

crowdsourced collection of landmark photos. Many of the landmarks in GLDv2 can be asso-

ciated to super categories by leveraging the “Instance of” annotations available in Wikimedia

Commons – see Fig. 4.7. Out of the original 203k landmarks in GLDv2-train, we were able

to scrape on Wikimedia Commons super categories for 129.1k. For the 101k landmarks in

GLDv2-index, we were able to scrape super categories for 68.1k. We apply a lightweight manual

cleaning process to remove landmarks assigned to more than one super category and those with

irrelevant super categories (e.g., super categories named “Wikimedia category” or “Wikimedia

disambiguation page”). Approximately 0.25% of landmarks end up being removed in this pro-

cess, leading to a total number of selected landmarks of 128.8k and 67.9k for the GLDv2-train

and GLDv2-index dataset splits, respectively. The number of unique scraped super categories

is 5.7k.

4.3.2 Post-processing super categories.

The scraped super categories are noisy and do not have the same level of granularity, e.g.

“church building” vs. “church building (1172–1954)”, which comes from the di↵erent sources

that created the Wikimedia Commons pages. To mitigate this issue, after the scraping, we

2GlDv2 landmarks are crawled from: https://commons.wikimedia.org/wiki/Accueil
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Figure 4.7: Screen captures of Wikimedia Commons web-pages. It depicts the “Instance of”
(within red rectangles), from which we collect hierarchical landmark labels: e.g. lake, waterfall,
mosque.

perform a two-step post-processing to obtain the final super categories.

1. K-means clustering: We first encode all the labels using the CLIP [12] textual encoder, as

it creates good embeddings for textual content similarly to S-BERT [265]. We perform a

k-means with K = 12 on the latent representations. This initial clustering allows showing

di↵erent prominent categories, e.g. “Church”, “Castle” etc.

2. Manual verification: We manually assess the obtained clusters based on the scraped label

names. We create semantic groups by dividing the k-means clusters into sub-clusters.

This leads to 78 super categories that we further group into human-made and natural

landmarks.
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H-GLDv2
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Figure 4.8: We illustrate for both final labels, “Natural landmarks” and “Human-made land-
marks” the 7 most represented super category.

We illustrate some of the created groups in Figs. 4.9a to 4.9c. These new hierarchical labels

are released under the CC BY 4.0 license.

(a) Waterfall. (b) Bridge. (c) Castle.

Figure 4.9: Figs. 4.9a to 4.9c illustrate some of the super categories of our H-GLDv2 dataset.

4.3.3 Discussion and limitations.

H-GLDv2 is a large scale dataset, we were thus not able to manually check all images. This

leads to a dataset that can have some noise. We release along with H-GLDv2 the scraped

labels to allow further work on the “super categories”. Furthermore, that there is an imbalance
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between super categories, see Fig. 4.10, that comes from unbalance of the classes represented

in GLDv2 [28].

Figure 4.10: We can observe a large imbalance between the super categories of our H-GLDv2.
This is notably due to the super category “Christian religious building” that groups more than
30k distinct landmarks.

A fundamental question on the hierarchy that we had to address in order to annotate the

dataset: should the hierarchy be consistent with the visual features or the semantic of human

defined concepts? As discussed in Sec. 2.3 we made the choice of creating a hierarchy based

on human-defined concepts, hoping to build a dataset that would closely align with human

preferences. This lead to H-GLDv2 being a hard task, as there is an ambiguity of some super

categories. For instance, the bottom right image of Fig. 4.9b is labeled as “Bridge”, however it

could be labeled as “River”, another super category.

4.4 Experiments.

4.4.1 Experimental setup.

Datasets. We use the standard benchmark Stanford Online Products [246] (SOP) with two

levels of hierarchy (L = 2), i.e. fine-grained ID (e.g. bike # 100) and the categories (e.g. bikes,

sofa, tea pot etc.); and iNaturalist-2018 [29] with the standard splits from [69] in two settings:

i) iNat-base with two levels of hierarchy (L = 2), i.e. the Species (fine-grained) and groups

of Species such as Plants, Mushrooms, Animals ii) iNat-full with the full biological taxonomy

composed of 7 levels (L = 7)3.
We also evaluate on the recent dynamic metric learning (DyML) datasets introduced in [81].

The DyML benchmark is composed of three datasets with 3 semantic levels (L = 3). DyML-V

depicts vehicles, it is annotated at the fine-grained with a vehicle ID, then a “model” (e.g.

3Biological taxonomy: https://en.wikipedia.org/wiki/Taxonomy_(biology)
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Toyota Camry, Honda Accord, Audi A4) and finally a “body type” (e.g. car, SUV, microbus,

pickup). DyML-A depicts animals annotated at the fine-grained level with a specie, then one

of 47 categories corresponding to “order”, “family” or “genus”, and finally one of 5 “classes”

for the coarse level, see Footnote 3 for the biological taxonomy. DyML-P that depicts online

products, the dataset is a subset from iMaterialist-20194, fine-grained product are organized in

a hierarchical structure5. The training set has three levels of semantic (L = 3), and each image

is annotated with the label corresponding to each level (like SOP and iNat-base/full), however

the test protocol is di↵erent. At test time for each dataset there are three sub-datasets, each

sub-dataset aims at evaluating the model on a specific hierarchical level (e.g. “Fine”), so we

can only compute binary metrics on each sub-dataset.

Metrics. For SOP and iNat, we evaluate the models based on three hierarchical metrics: H-AP

– which we introduced in Sec. 4.2.2 – the NDCG and the Average Set Intersection (ASI):

SI(n) = |{a1, . . . , an} fl {b1, . . . , bn}|

n

ASI = 1
N

Nÿ

n=1
SI(n) (4.16)

The ASI [266] measures at each rank n Æ N the set intersection proportion (SI) between

the ranked list a1, . . . , aN and the ground truth ranking b1, . . . , bN , with N the total number of

positives. As it compares intersections, the ASI can naturally take into account the di↵erent

levels of semantic.

We also report the AP for each semantic level l by considering that all instances with

semantic levels Ø l are positives:

AP(l) =
ÿ

kœ

tL

q=l
�(q)

rankl(k)
rank(k) , where rankl(k) = 1 +

ÿ

jœ

tL

q=l
�(q)

H(sj ≠ sk) (4.17)

Finally, for DyML, we follow the evaluation protocols of [81] and compute AP, ASI and

R@1 on each semantic level before averaging them. We cannot compute H-AP or NDCG on

those datasets, as the full hierarchical tree is not available on the test set.

4iMaterialist-2019 dataset: https://github.com/msight-tech/imaterialist-product-2019
5the original hierarchical structure of iMaterialist-2019 can be observed at: product_tree.pdf.
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Baselines. We compare HAPPIER and ROD-NDCG to several recent image retrieval methods

optimized at the fine-grained level, which represent strong baselines for IR when training with

binary labels: Triplet SH (TLSH) [65], NormSoftMax (NSM) [66], ProxyNCA++ (NCA++)

[164] and ROADMAP [95]. We also benchmark against hierarchical methods obtained by sum-

ming binary losses at di↵erent levels (denoted by �), and with respect to the recent hierarchical

losses CSL [81] and CLCD [82].

Implementation details. Unless specified otherwise, all reported results are obtained with

– = 1 in Eq. (4.7) and ⁄ = 0.1 for LHAPPIER. We study the impact of these parameters

in Sec. 4.4.3.

SOP & iNat-base/full. Our model is a ResNet-50 [45] pre-trained on ImageNet, to which

we append a LayerNormalization layer [267] with no a�ne parameters after the (average)

pooling and a Linear layer that reduces the embeddings size from 2048 to 512. We use the

Adam [268] optimizer with a base learning rate of 1e
≠5 and weight decay of 1e

≠4 for SOP and

a base learning rate of 1e
≠5 and weight decay of 4e

≠4 for iNat-base/full. The learning rate is

decreased using cosine annealing decay, for 75 epochs on SOP and 100 epochs on iNat-base/full.

We “warm up” our model for 5 epochs, i.e. the pre-trained weights are not optimized. We use

standard data augmentation: RandomResizedCrop and RandomHorizontalFlip, with a final

crop size of 224, at test time we use CenterCrop. We use a fixed batch size of 256 and use the

hard sampling strategy from [173] on SOP and the standard class balanced sampling [66] (4

instances per class) on iNat-base/full.

DyML. We use a ResNet-34 [45] randomly initialized on DyML-V&A and pre-trained on

ImageNet for DyML-P, following [81]. We use an SGD optimizer with Nesterov momentum

(0.9), a base learning rate of 0.1 on DyML-V&A and 0.01 on DyML-P with a weight decay of

1e
≠4. We use cosine annealing decay to reduce the learning rate for 100 epochs on DyML-V&A

and 20 on DyML-P. We use the same data augmentation and random seed as for SOP and

iNat-base. We also use the class balanced sampling (4 instances per class) with a fixed batch

size of 256.

H-GLDv2. We use a ResNet-101 with GeM pooling [64] and initialize a linear projection with

a PCA [67]. We use a batch size of 256 and train for ≥ 55k steps with Adam and a learning rate

of 10≠5 decayed using a cosine schedule. We report the mAP@100 [28], and the hierarchical

metrics H-AP, ASI and NDCG.
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4.4.2 Experimental Results.

4.4.2.1 Hierarchical results.

We first evaluate HAPPIER on hierarchical metrics. On Tab. 4.1, we notice that HAPPIER

significantly outperforms methods trained on the fine-grained level only, with a gain on H-AP

over the best performing methods of +16.1pt on SOP, +13pt on iNat-base and +12.7pt on iNat-

full. HAPPIER also exhibits significant gains compared to hierarchical methods. On H-AP,

HAPPIER has important gains on all datasets (e.g. +6.3pt on SOP, +4.2pt on iNat-base over

the best competitor), but also on ASI and NDCG. This shows the strong generalization of the

method on standard metrics. Compared to the recent CSL loss [81], we observe a consistent

gain over all metrics and datasets, e.g. +6pt on H-AP, +8pt on ASI and +2.6pt on NDCG on

SOP. This shows the benefits of optimizing a well-behaved hierarchical metric compared to an

ad-hoc proxy method.

Table 4.1: Comparison of HAPPIER on SOP and iNat-base/full when using hierarchical metrics.
Best results in bold, second best underlined.

Method
SOP iNat-base iNat-full

H-AP ASI NDCG H-AP ASI NDCG H-AP ASI NDCG

F
in
e

Triplet SH [65] 42.2 22.4 78.8 39.5 63.7 91.5 36.1 59.2 89.8
NSM [66] 42.8 21.1 78.3 38.0 51.6 88.9 33.3 51.7 88.2
NCA++ [164] 43.0 21.5 78.4 39.5 57.0 90.1 35.3 55.7 89.0
Smooth-AP [69] 42.9 20.6 78.2 41.3 64.2 91.9 37.2 60.1 90.1
ROADMAP [95] 43.3 19.1 77.9 40.3 61.0 91.2 34.7 59.6 89.5

H
ie
r.

�TLSH [65] 53.1 53.3 89.2 44.0 87.4 96.4 39.9 85.5 92.0
�NSM [66] 50.4 49.7 87.0 47.9 75.8 94.4 46.9 74.2 93.8
�NCA++ [164] 49.5 52.8 87.8 48.9 78.7 95.0 44.7 74.3 92.6
CSL [81] 52.8 57.9 88.1 50.1 89.3 96.7 45.1 84.9 93.0

ROD-NDCG 58.3 65.0 91.1 53.1 87.8 96.6 44.8 81.1 93.1
HAPPIER 59.4 65.9 91.5 54.3 89.3 96.9 47.9 87.2 93.8

On Tab. 4.2, we evaluate HAPPIER on the recent DyML benchmarks. HAPPIER again

shows significant gains in mAP and ASI compared to methods only trained on fine-grained

labels, e.g. +9pt in mAP and +10pt in ASI on DyML-V. HAPPIER also outperforms other

hierarchical baselines: +4.8pt mAP on DyML-V, +0.9 on DyML-A and +1.8 on DyML-P. In

R@1, HAPPIER performs on par with the best methods on DyML-V and outperforms hierar-

chical baselines by a large margin on DyML-P: 63.7 vs. 60.8 for �NSM. Interestingly, HAPPIER
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Table 4.2: Performance comparison on Dynamic Metric Learning benchmarks [81].

Method
DyML-Vehicle DyML-Animal DyML-Product

mAP ASI R@1 mAP ASI R@1 mAP ASI R@1

F
in
e

TLSH [65] 26.1 38.6 84.0 37.5 46.3 66.3 36.32 46.1 59.6
NSM [66] 27.7 40.3 88.7 38.8 48.4 69.6 35.6 46.0 57.4
Smooth-AP [69] 27.1 39.5 83.8 37.7 45.4 63.6 36.1 45.5 55.0
ROADMAP [95] 27.1 39.6 84.5 34.4 42.6 62.8 34.6 44.6 62.5

H
ie
r.

�TLSH [65] 25.5 38.1 81.0 38.9 47.2 65.9 36.9 46.3 58.5
�NSM [66] 32.0 45.7 89.4 42.6 50.6 70.0 36.8 46.9 60.8
CSL [81] 30.0 43.6 87.1 40.8 46.3 60.9 31.1 40.7 52.7
CLCD-ACR [82] 16.0 42.9 - 36.0 57.1 - 29.4 58.8 -
CLCD-ICR [82] 16.6 43.7 - 35.7 56.0 - 30.2 59.5 -

ROD-NDCG 36.1 49.2 88.7 43.2 50.7 69.1 38.9 48.6 65.4
HAPPIER 37.0 49.8 89.1 43.8 50.8 68.9 38.0 47.9 63.7

also consistently outperforms CSL [81] on its own datasets.

4.4.2.2 Detailed evaluation.

Tabs. 4.3 and 4.4 shows the di↵erent methods’ performances on all semantic hierarchy levels.

We evaluate both HAPPIER and HAPPIERF (– > 1 for Eq. (4.7) in Sec. 4.2.2), with – = 5 on

SOP and – = 3 on iNat-base/full. HAPPIER optimizes the overall hierarchical performances,

while HAPPIERF is meant to be optimal at the fine-grained level while still optimizing coarser

levels.

On Tab. 4.3, we observe that HAPPIER gives the best performances at the coarse level, with

a significant boost compared to fine-grained methods, e.g. +43.9pt AP compared to the best

non-hierarchical TLSH [65] on SOP. HAPPIER even outperforms the best fine-grained methods

in R@1 on iNat-base, but is slightly below on SOP. HAPPIERF performs on par with the best

methods at the finest level on SOP, while further improving performances on iNat-base, and

still significantly outperforms fine-grained methods at the coarse level.

The satisfactory behavior of HAPPIER and HAPPIERF are confirmed and even more pro-

nounced on iNat-full (Tab. 4.4): HAPPIER gives the best results on coarser levels (from “Or-

der”), while being very close to the best results on finer ones. HAPPIERF gives the best results

at the finest levels, even outperforming very competitive fine-grained baselines.

Again, note that HAPPIER outperforms the hierarchical CSL [81] on all semantic levels and

91



4.4. EXPERIMENTS.

Table 4.3: Comparison of HAPPIER vs. methods trained only on fine-grained labels on SOP
and iNat-base. Metrics are reported for both semantic levels.

SOP iNat-base

Fine Coarse Fine Coarse
Method R@1 AP AP R@1 AP AP

F
in
e

TLSH [65] 79.8 59.6 14.5 66.3 33.3 51.5
NSM [66] 81.3 61.3 13.4 70.2 37.6 38.8
NCA++ [164] 81.4 61.7 13.6 67.3 37.0 44.5
Smooth-AP [69] 81.3 61.7 13.4 67.3 35.2 53.1
ROADMAP [95] 82.2 62.5 12.9 69.3 35.1 50.4

H
ie
r.

CSL [81] 79.4 58.0 45.0 62.9 30.2 88.5

HAPPIER 81.0 60.4 58.4 70.7 36.7 88.6
HAPPIERF 81.8 62.2 36.0 71.6 37.8 78.8

Table 4.4: Comparison of HAPPIER vs. methods trained only on fine-grained labels on iNat-
Full. Metrics are reported for all 7 semantic levels.

Method
Species Genus Family Order Class Phylum Kingdom

R@1 AP AP AP AP AP AP AP

F
in
e

TLSH [65] 66.3 33.3 34.2 32.3 35.4 48.5 54.6 68.4
NSM [66] 70.2 37.6 38.0 31.4 28.6 36.6 43.9 63.0
NCA++ [164] 67.3 37.0 37.9 33.0 32.3 41.9 48.4 66.1
Smooth-AP [69] 67.3 35.2 36.3 33.5 35.0 49.3 55.8 69.9
ROADMAP [95] 69.3 35.1 35.4 29.3 29.6 46.4 54.7 69.5

H
ie
r.

CSL [81] 59.9 30.4 32.4 36.2 50.7 81.0 87.4 91.3

HAPPIER 70.2 36.0 37.0 38.0 51.9 81.3 89.1 94.4
HAPPIERF 70.8 37.6 38.2 38.8 50.9 76.1 82.2 83.1

datasets on Tabs. 4.3 and 4.4, e.g. +5pt on the fine-grained AP (“Species”) and +3pt on the

coarsest AP (“Kingdom”) on Tab. 4.4.

4.4.2.3 Hierarchical landmark results.

In Tab. 4.5 we report the first results of ROADMAP and HAPPIER vs. other fine-grained

methods and hierarchical methods on our H-GLDv2 dataset. Tab. 4.5 demonstrates once

again the interest of our AP surrogate, ROADMAP and HAPPIER F perform the best on the

fine-grained metric mAP@100. Furthermore, HAPPIER has the best hierarchical results. It
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Table 4.5: Comparison of ROADMAP and HAPPIER vs. baselines on our H-GLDv2.

Method mAP@100 H-AP ASI NDCG

F
in
e

SoftBin [67] 39.0 35.2 74.6 94.4
Smooth-AP [69] 42.5 37.3 76.9 94.7
R@k [70] 41.6 36.8 77.1 94.7
ROADMAP 42.9 37.0 75.0 94.4

F
in
e CSL [81] 37.5 36.2 85.4 95.7

HAPPIER 41.6 38.8 83.8 95.7
HAPPIERF 43.7 38.3 77.5 94.8

outperforms ROADMAP by +2.8pt H-AP and +8.8pt ASI. It also outperforms CSL by +2.6pt

H-AP.

4.4.2.4 HAPPIER on trademark logos.

In this section, we report results of HAPPIER on trademark logo retrieval. Both TM Logo-

1760 and TM Logo-1399 are Coexya’s private datasets compose of 700k images and 1760 classes

and 1.4m images and 1399 classes respectively. We can see that HAPPIER outperforms the

standard image classification methods previously used at Coexya on both the fine-grained AP

and on H-AP. This again shows the interest of optimizing a well-designed surrogate loss. It

also showcases the expressivity of the relevance used for HAPPIER, i.e. it can be defined to

accommodate for a hierarchical multi-label setting.

Table 4.6: Comparison of ROADMAP and HAPPIER vs. standard classification on private
trademark logo retrieval datasets.

Method
TM Logo-1760 TM Logo-1399

AP H-AP AP H-AP

NSM [66] 15.6 14.1 18.8 19.1
HAPPIER 37.0 37.1 41.9 38.1
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4.4.3 HAPPIER analysis.

Ablation study. In Tab. 4.7, we study the impact of our di↵erent choices regarding the op-

timization of H-AP. The baseline method uses a sigmoid to optimize H-AP, as in Smooth-

AP [69]. Switching to our surrogate loss L
s
H-AP yields a +0.8pt increase in H-AP. Finally,

the combination with L
ú

DG in HAPPIER results in an additional +1.3pt improvement in H-AP.

This again shows the interest of using the proposed ROADMAP framework from Chapter 3.

Impact of the relevance function. Tab. 4.8 compares models that are trained with the rele-

vance function of Eq. (4.7), i.e. H-AP, and
q

wAP Property 1. We report results for H-AP,
q

wAP and NDCG. Both H-AP,
q

wAP perform better when trained with their own metric:

+1.1pt H-AP for the model trained to optimize it and +0.7pt
q

wAP for the model trained to

optimize it. Both models show similar performances in NDCG (96.4 vs. 97.0). This shows how

the relevance choice in H-AP will impact the performances of model.

Table 4.7: Impact of optimization choices for
H-AP (cf. Sec. 4.2.3) on iNat-base.

L
s
H-AP L

ú

DG H-AP

7 7 52.3
3 7 53.1
3 3 54.3

Table 4.8: Comparison of H-AP (Eq. (4.7))
and �wAP from Property 1.

testæ
train¿

H-AP
q

wAP NDCG

H-AP 53.1 39.8 97.0q
wAP 52.0 40.5 96.4
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↵

36.8

37.0

37.2

37.4

37.6

A
P
fi
n
e

APfine

(a) APfine vs – in Eq. (4.7).

0.0 0.1 0.2 0.3 0.4 0.5 0.7

�

48

49

50

51

52

53

54

H
-A
P

H-AP

(b) H-AP vs. ⁄ for LHAPPIER.

Figure 4.11: Impact on iNat-base of – in Eq. (4.7) for setting the relevance of H-AP (a) and
of the ⁄ hyperparameter on HAPPIER results (b).

94



4.4. EXPERIMENTS.

Hyperparameters. Fig. 4.11a studies the impact of – for setting the relevance in Eq. (4.7):

increasing – improves the performances of the AP at the fine-grained level on iNat-base, as

expected. We also show in Fig. 4.11b the impact of ⁄ weighting L
s
H-AP and L

ú

DG in HAPPIER

performances: we observe a stable increase in H-AP within 0 < ⁄ < 0.5 compared to optimizing

only L
s
H-AP, while a drop in performance is observed for ⁄ > 0.5. This shows the complemen-

tarity of L
s
H-AP and L

ú

DG, and how, when combined, HAPPIER reaches its best performance.

4.4.4 Qualitative study.

We provide here qualitative assessments of HAPPIER, including embedding space analysis

and visualization of HAPPIER’s retrievals.

(a) t-SNE visualization of a model trained
only on the fine-grained labels.

(b) t-SNE visualization of a model trained
with HAPPIER.

Figure 4.12: t-SNE visualization of the embedding space of two models trained on SOP. Each
point is the average embedding of each fine-grained label (object instance) and the colors
represent coarse labels (object category, e.g. bike, co↵ee maker).

t-SNE: organization of the embedding space. In Fig. 4.12, we plot using t-SNE [269], [270]

how HAPPIER learns an embedding space on SOP (L = 2) that is well-organized. We plot the

mean vector of each fine-grained class, and we assign the color based on the coarse level. We

show on Fig. 4.12a the t-SNE visualization obtained using a baseline method trained on the

fine-grained labels, and in Fig. 4.12b we plot the t-SNE of the embedding space of a model

trained with HAPPIER. We cannot observe any clear clusters for the coarse level on Fig. 4.12a,
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(a) ⁄ = 0.3 (b) ⁄ = 0.5 (c) ⁄ = 0.9

Figure 4.13: t-SNE visualization of the embedding space of models trained with HAPPIER
on SOP with di↵erent values of ⁄. Each point is the average embedding of each fine-grained
label (object instance) and the colors represent coarse labels (object category, e.g. bike, co↵ee
maker).

whereas we can appreciate the quality of the hierarchical clusters formed on Fig. 4.12b.

Robustness to ⁄. Fig. 4.11b illustrates that HAPPIER is robust with respect to ⁄, with per-

formances increasing for most values between 0.1 and 0.9. In addition, we also show in Fig. 4.13

that for 0 < ⁄ < 0.9 HAPPIER leads to a better organization of the embedding space than a

fine-grained baseline (see Fig. 4.12a). This is expected since the lower ⁄ is, the more emphasis

is put on optimizing H-AP, which organizes the embedding space in a hierarchical structure.

Mistake severity on iNat and SOP. We showcase errors of HAPPIER vs. a fine-grained base-

line on iNat-base Fig. 4.14 and on SOP Fig. 4.15. On Figs. 4.14a and 4.15a, we illustrate how a

model trained with HAPPIER has a lower mistake severity than a baseline model trained only

on the fine-grained level. On Figs. 4.14b and 4.15b, we show an example where both mod-

els fail to retrieve the correct fine-grained instances, however on Fig. 4.14b the model trained

with HAPPIER retrieves images of birds that are semantically more similar to the query, and

on Fig. 4.15b the model trained with HAPPIER still retrieve instance of bikes.

Similarly, we illustrate in Figs. 4.16 and 4.17 an example of a query image and the top 25
retrieved results on iNat-full (L = 7). Given the same query, both models failed to retrieve the

correct fine-grained images (i.e. in �(7)). The fine-grained model in Fig. 4.17 retrieves images

that are semantically more distant than the images retrieved with HAPPIER in Fig. 4.16. For

example, HAPPIER retrieves images that are either in �(5) or �(4) (only one instance is in �(3))
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whereas the standard model retrieves instances that are in �(2) or �(1).

(a) HAPPIER can help make less severe mistakes. The inversion on the bottom row are with negative
instances (in red), where as with HAPPIER (top row) inversions are with instances sharing the same
coarse label (in orange).

(b) In this example, the models fail to retrieve the correct fine-grained images. However HAPPIER
still retrieves images with the same coarse label (in orange) whereas the baseline retrieves images that
are dissimilar semantically to the query (in red).

Figure 4.14: Qualitative examples of failure cases from a standard fine-grained model corrected
by training with HAPPIER.
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(a) HAPPIER can help make less severe mistakes. The inversion on the bottom row are with negative
instances (in red), whereas with HAPPIER (top row) inversions are with instances sharing the same
coarse label “bike” (in orange).

(b) In this example, the models fail to retrieve the correct fine-grained images. However, HAPPIER
still retrieves images of very similar bikes (in orange) whereas the baseline retrieves images that are
dissimilar semantically to the query (in red).

Figure 4.15: Qualitative examples of failure cases from a standard fine-grained model corrected
by training with HAPPIER.
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Figure 4.16: Images retrieved for the query image by a model trained with HAPPIER on iNat-
full (L = 7).
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Figure 4.17: Images retrieved for the query image by a model trained with standard model on
iNat-full (L = 7).
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4.5 Conclusion.

In this chapter, we leverage hierarchical relations between concepts to learn robust rank-

ings. We introduced a new metric H-AP that evaluates hierarchical rankings by extending

the well-known average precision. We show that using the ROADMAP framework introduced

in Chapter 3 we were able to optimize to hierarchical metrics, our novel H-AP and the NDCG.

Furthermore, we were able to address one of the shortcomings of this framework: its brittleness

on the mistake severity. We showed that creating hierarchical labels on a large scale dataset

is feasible, and we released hierarchical annotations for our hierarchical landmark dataset H-

GLDv2. Extensive experiments show that HAPPIER and ROD-NDCG performs on par to state-

of-the-art image retrieval methods on fine-grained metrics and exhibits significant improvements

vs. recent hierarchical methods on hierarchical metrics. Learning more robust rankings reduces

the severity of ranking errors, and is qualitatively related to a better organization of the em-

bedding space with HAPPIER.

In this chapter, we focused on one aspect of deep neural networks robustness: “mistake

severity”. We proposed a direction that involves training (or fine-tuning) a model. However,

in real world application the model has been trained and will face instances at inference time

that are too far from the training distribution and where mistake severity is not su�cient. We

will focus on a di↵erent aspect of model robustness, out-of-distribution detection.
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Chapter 5

Post-hoc out-of-distribution detection

In this chapter, we tackle out-of-distribution (OOD) detection, where a model must decide if

inputs come from the same distribution as the training set. OOD detection is a critical require-

ment for the deployment of deep neural networks. Contrary to the previous chapter where we

studied mistake severity with HAPPIER, in this chapter we address the issue of discriminating

instances even before classifying them. Furthermore, in this chapter, the robustness is studied

once the network is trained, i.e. in a post-hoc fashion, not enforced during training. Ensuring

robustness in a post-hoc fashion allows the use of o↵-the-shelf models with good predictive

performances, which would be prohibitive to train. We introduce in this chapter an Hybrid

Energy-based model in the feATure space, HEAT, which is a new post-hoc OOD detection

method. It estimates the density of in-distribution (ID) samples using hybrid energy-based

models (EBM) in the feature space of pre-trained backbones. HEAT complements prior OOD

detectors, e.g. parametric models like Gaussian Mixture Models (GMM), to provide an accurate

yet robust density estimation. A second contribution is to leverage the EBM framework to pro-

vide a unified density estimation and to compose several energy terms. Extensive experiments

demonstrate the significance of the two contributions. We validate HEAT vs. state-of-the-art

OOD detection methods on the CIFAR-10 / CIFAR-100 benchmarks as well as on the large-scale

ImageNet benchmark. The code is available at: github.com/MarcLafon/heatood.
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5.1 Introduction.

Out-of-distribution (OOD) detection is a major safety requirement for the deployment

of deep learning models in critical applications, e.g. healthcare, autonomous driving, or de-

fense [271]–[273]. Deployed machine learning systems must successfully perform a specific task,

e.g. image classification, or object detection while being able to distinguish in-distribution (ID)

from OOD samples, in order to abstain from making an arbitrary prediction when facing the

latter. We also distinguish, near-OOD samples, that have classes more semantically close to

the ID samples, from far-OOD with classes that are semantically further.

Post-hoc OOD detection. In recent years, there has been a raise of performant o↵-the-shelf

models available to the deep learning community [6], [12], [34], [274]. To leverage state-of-

the-art models for the main prediction task, recent OOD detection approaches follow a post-

hoc strategy [85], [89], [90], [94], [211], [275], instead of explicitly enforcing OOD detection

performances during training, e.g. with outlier exposure [209]. This strategy allows maintaining

the performances of these o↵-the-shelf state-of-the-art models, while also relaxing the need for

very demanding training processes, which can be prohibitive with huge deep neural networks

and foundation models.

Density based OOD detection. State-of-the-art post-hoc methods exploit the feature space of

pre-trained networks and attempt to estimate the density of ID features to address OOD detec-

tion. Existing ID density estimation methods include Gaussian Mixture Models (GMMs) [89],

[91], k nearest neighbors distribution (kNN) [90], or the distribution derived from the energy

logits (EL) [94]. However, these approaches tend to detect di↵erent types of OOD samples: for

instance, GMMs’ density explicitly decreases when moving away from training data, making

them e↵ective for far-OOD detection, while EL benefits from the classifier training to obtain

strong results on near-OOD samples [211]. Because of their strong priors, e.g. the feature space

is Gaussian for [89], it is di�cult to overcome these biases. To address this issue, ResFlow [236]

uses a normalizing flow (NF) [234], [235] to learn the residual of a Gaussian density for OOD

detection. However, NFs require invertible mapping, which intrinsically limit their expressive

power and make the learned residual less accurate, while also being computationally expensive.

Composition for OOD detection. Another direction, discussed in Sec. 2.4.4, is to combine

several detectors to perform OOD detection. The topic of model ensembling or composition of

scorers has been widely studied in OOD detection. Methods like [238] average the predictions
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of several models in order to compute a confidence score. To limit the need for diverse models,

methods like [91], [276] compute a confidence score from features at several layers of a DNN.

Despite showing high detection rates, these methods induce a large computation overhead at

inference time, and may require training several DNN, thus limiting their use in real world

applications.

Prior 1 - (GMM)

FPRNear = 51.6%
FPRFar = 7.0%

Prior K - (EL)

FPRNear = 45.2%
FPRFar = 17.8%

a) Prior scorers

Hybrid density 1 - (HEAT-GMM)

FPRNear = 46.9%
FPRFar = 7.1%

Hybrid density K - (HEAT-EL)

FPRNear = 44.0%
FPRFar = 16.6%

b) Hybrid densities

HEAT
FPRNear = 39.4%
FPRFar = 6.2%

FPRX: False Positive Rate on Near/Far OODs

c) Energy composition

... ...

Figure 5.1: Illustration of our HEAT model. HEAT leverages a) K prior density estimators,
such as GMM or EL, and overcomes their modeling biases by learning a residual term with an
EBM b) leading to more accurate OOD scorers, e.g. HEAT-GMM or HEAT-EL. The second con-
tribution is to combine the di↵erent refined scorers using an EBM energy composition function.
The final HEAT prediction c) can thus leverage the strengths of the di↵erent OOD scorers, and
be e↵ective for both far and near-OOD detection.

In this chapter, we introduce HEAT, a new post-hoc density-based OOD detection method

which estimates the density of ID samples using a Hybrid Energy-based model in the feATure

space of a fixed pre-trained backbone, which provides strong OOD detection performances on

both near and far-OOD data. HEAT leverages the energy-based model (EBM) framework [93]

to build a powerful density estimation method relying on two main components:

1. Energy-based correction of prior OOD detectors (e.g. GMMs or EL) with a data-driven

EBM, providing an accurate ID density estimation while benefiting from the strong gen-

eralization properties of the priors. The corrected model is carefully trained such that the

prior and residual terms achieve optimal cooperation. Furthermore, EBMs do not require

a specific architecture design, contrarily to NFs, and can be implemented in practice with

a standard multi-layer perceptron.
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2. Hybrid density estimation by combining several sources to improve OOD detection, using

the principled energy functions composition. Which allows leveraging the di↵erent mod-

eling biases of prior OOD detectors, e.g. GMMs and EL. The energy composition requires

only a single hyperparameter. It also involves seamlessly no computational overhead since

it is applied at a single layer of the network.

We illustrate HEAT in Fig. 5.1 using two prior OOD detectors from the literature: SSD+

which is based on GMMs [89] and EL [94], with CIFAR-10 dataset as ID dataset and with six

OOD datasets, see Sec. 5.3. We can see in Fig. 5.1 that GMM is able to correctly detect far-

OOD samples while struggling on near-OOD ones, while EL exhibits the opposite behavior. The

energy-correction step enhances both priors, reducing the false positive rate (FPR¿) by -4.7 pts

on near-OOD while being stable on far-OOD for GMM, and by -3.2 pts on near-OOD and -

1.2 pts for EL. Finally, the energy-composition step produces a hybrid density estimator leading

to a better ID density estimation which further improves the OOD detection performances, both

for near and far OOD regimes.

We conduct an extensive experimental validation in Sec. 5.3, showing the importance of

our two contributions. HEAT performs well vs. state-of-the-art OOD methods with CIFAR-

10/-100 as ID data, and on the large-scale ImageNet dataset. HEAT is also agnostic to the

prediction backbone (ResNet, ViT) and remains e↵ective in low-data regimes.

5.2 HEAT for OOD detection.

In this section, we describe the proposed HEAT model to estimate the density of ID features

using a hybrid energy-based model (EBM). We remind that we place ourselves in the di�cult

but realistic case where only ID samples are available, and we do not use any OOD samples

for density estimation. Also, HEAT is a post-hoc approach estimating the density of the latent

space of a pre-trained prediction model, as in [89]–[91], [211].

Let p(x) be the probability of ID samples, where x œ X , and z = „(x) œ Z denotes the

network’s embedding of x with Z the d-dimensional latent space at the penultimate layer of a

pre-trained prediction model f , e.g. a deep neural net for classification. We aim at estimating

p(z|D) with D := {xi}
N
i=1 the ID training dataset1.

We illustrate the two main components at the core of HEAT in Fig. 5.2. Firstly, we introduce

a hybrid density estimation to refine a set of prior densities {qk(z)}1ÆkÆK by complementing

1we ignore the dependence to D in the following and denote the sought density as p(z).
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Figure 5.2: Schematic view of the HEAT model for OOD detection. Each selected prior
density estimator qk is expressed as an EBM, qk(z) Ã exp (≠Eqk

(z)), and is refined with its own
residual EBM parameterized with a neural network: The energy for each prior Ek (e.g. EL,
GMM) is corrected by a residual energy E◊k

to produce the hybrid energy E
h
◊k

(cf. Sec. 5.2.1).

Then all hybrid energies are composed to produce HEAT’s energy E
—
HEAT

(cf. Sec. 5.2.2), which
is used as uncertainty score for OOD detection.

each of them with a residual EBM. Secondly, we propose to compose several hybrid density

estimations based on di↵erent priors, which capture di↵erent facets of ID density distributions.

5.2.1 Hybrid Energy-based density estimation.

The main motivation in hybrid EBM density estimation is to leverage existing models that

rely on specific assumptions on the form of the density p(z), e.g. EL [94], which captures class-

specific information in the logit vector, or SSD [89] which uses a GMM. These approaches have

appealing properties: GMM is a parametric model relying on few parameters thus exhibiting

strong generalization performances, and EL benefits from classification training. However, their

underlying modeling assumptions intrinsically limit their expressiveness which leads to coarse

boundaries between ID and OOD, and they generally fail at discriminating between ambiguous

data.

Hybrid EBM model. Formally, let qk(z) be a density estimator inducing an OOD-prior among

a set of K priors {qk(z)}1ÆkÆK . We propose to refine its estimated density by learning a residual

model p
r
◊k

(z), such that our hybrid density estimation is performed by p
h
◊k

(z) as follows:

p
h
◊k

(z) = 1
Z(◊k)p

r
◊k

(z)qk(z), (5.1)
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with Z(◊k) = s
p

r
◊k

(z)qk(z)dz the normalization constant. We propose to learn the residual

density p
r
◊k

(z) with an EBM: p
r
◊k

(z) Ã exp (≠E◊k
(z)). From Eq. (5.1), we can derive a hybrid

energy E
h
◊k

(z) = Eqk
(z) + E◊k

(z) and express p
h
◊k

(z) as follows:

p
h
◊k

(z) = 1
Z(◊k) exp

1
≠E

h
◊k

(z)
2
, (5.2)

with Eqk
= ≠ log qk(z) the energy from the prior. The goal of the residual energy E◊k

(z) is

to compensate for the lack of accuracy of the energy of the prior density qk(z). We choose

to parameterize it with a neural network, as shown in Fig. 5.2. This gives our EBM density

estimation the required expressive power to approximate the residual term.

Hybrid EBM training. The hybrid model energy E
h
◊k

(z) can be learned via maximum like-

lihood estimation (MLE), which amounts to perform stochastic gradient descent with the fol-

lowing loss:

LMLE(◊k) = Ez≥pin

Ë
E◊k

(z)
È

≠ EzÕ≥ph
◊k

Ë
E◊k

(zÕ)
È
, (5.3)

with z ≥ pin being the true distribution of the features from the dataset. Minimizing Eq. (5.3)

has for e↵ect to lower the energy of real samples while raising the energy of generated ones.

To learn a residual model, we must sample z
Õ from the hybrid model p

h
◊k
. To do so, we fol-

low previous works on EBM training [218] and exploit stochastic gradient Langevin dynamics

(SGLD) [216]. SGLD sampling consists in gradient descent on the energy function:

zt+1 = zt ≠
÷

2ÒzE
h
◊k

(zt) + Ô
÷ wt, with wt ≥ N (0, I) (5.4)

where ÷ is the step size, the chain being initiated with z0 ≥ qk. The residual energy corrects

the prior density by raising (resp. lowering) the energies in areas where the prior over- (resp.

under-) estimates pin. It then does so for the current hybrid model E
h
◊k
. The overall training

hybrid EBM scheme is summarized Algorithm 2.

Controlling the residual. As our goal is to learn a residual model over q, we must prevent the

energy-correction term E◊k
to take too large values, thus canceling the benefit from the prior

model qk. Therefore, we introduce an additional loss term, preventing the hybrid model from

deviating too much from the prior density:

LC(◊k) = Epin,ph
◊k

Ë
(Eh

◊k
≠ Eqk

)2
È
. (5.5)

The final loss is then:

LTot(◊k) = LMLE(◊k) + ⁄ LC(◊k), (5.6)
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where ⁄ is an hyperparameter balancing between the two losses. Although LC(◊k) in Eq. (5.5)

rewrites as Epin,ph
◊k

Ë
E

2
◊k

È
, we point out that its objective goes beyond a standard ¸2-regularization

used to stabilize training. It has the more fundamental role of balancing the prior and the

residual energy terms in order to drive a proper cooperation.

Algorithm 2 Hybrid Energy Based Model Training
input : Features Dz, ID-Prior (qk, Eqk

), ⁄, – and ÷.

output: Hybrid EBM E
h
◊k

= Eqk
(z) + E◊k

(z). // cf. Eq. (5.2)

while not converged do

Sample z œ Dz and zÕ

0 ≥ qk

for 0 Æ t Æ T ≠ 1 do
w ≥ N (0, I)
zÕ

t+1 Ω ztÕ ≠
÷
2ÒzE

h
◊k

(zÕ

t) + Ô
÷w // SGLD, Eq. (5.4)

end
LT ot(◊k) = LMLE(◊k) + ⁄Lc(◊k) // cf. Eq. (5.6)

◊k Ω ◊k ≠ –Ò◊k
LT ot(◊k)

end

5.2.2 Composition of refined prior density estimators.

In this section, we motivate the choice of prior OOD scorers that we correct, and how to

e�ciently compose them within our HEAT framework.

Selected OOD-Priors. As previously stated, EL and GMM show complementary OOD detec-

tion performances, EL being useful to discriminate class ambiguities while GMM is e↵ective on

far-OOD. Additionally, they can be directly interpreted as energy-based models and thus can

easily be refined and composed with HEAT.

1. Class Prior. Based on the energy from the logits derived in [94] we express the hy-

brid energy HEAT-EL as E
h
◊l

(z) = ≠ log q
c e

f(z)[c] + E
r
◊l

(z) where f(.)[c] denotes the logit

associated to the class c.

2. Feature prior. For the GMM prior, we derive an energy from the Mahalanobis distances

to each class centroid. Giving the following expression for our hybrid HEAT-GMM’s

energy E
h
◊g

(z) = ≠ log q
c e

≠ 1
2 (z≠µc)T �≠1(z≠µc) + E

r
◊g

(z) with � and µc being the empirical

covariance matrix and mean feature for class c. HEAT-GMM’s energy is computed on the
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z vector in Fig. 5.2, which is obtained by average pooling from the preceding tensor in

the network.

3. Style prior. Finally, inspired by Gram matrices [239], we aim at further exploiting the full

feature volume before the pooling operation (e.g. average pooling) using the second-order

moments. We hypothesize that the volume and its second order moments contains “style”

information relevant to OOD detection. We compute the vector of second-order moments

of the feature volume by using a std-pooling operator, i.e. we compute the standard

deviation of each local feature map resulting in a single vector ‡ œ Rd. We subsequently

model the density of the second-order features with a GMM. This leads to a third hybrid

EBM denoted as HEAT-GMMstd.

Composition strategy. The EBM framework o↵ers a principled way to make a composi-

tion [241] of energy functions. Given K corrected energy functions E
h
◊k
, such that: p

h
◊k

Ã

exp(≠(E◊k
(z) + Eqk

(z)), we introduce the following composition function:

E
—
HEAT = 1

—
log

Kÿ

k=1
e

—Eh
◊k (5.7)

Depending on —, E
—
HEAT can recover a sum of energies (— = 0), i.e. a product of probabili-

ties. For — = ≠1, E
—
HEAT is equivalent to the logsumexp operator, i.e. a sum of probabilities.

Moreover, unlike previous approaches that require learning a set of weights [91], [236], HEAT’s

composition only requires tuning a single hyperparameter, i.e. — which has a clear interpreta-

tion.

The composition strategy adopted in HEAT is also scalable since: i) we work in the fea-

ture space z = „(x) œ Z of controlled dimension (e.g. 1024 even for the CLIP foundation

model [12]), and ii) our energy-based correction uses a relatively small model (we use a 6-layers
MLP in practice).

OOD detection with HEAT. Finally, we use the learned and composed energy of HEAT,

E
—
HEAT in Eq. (5.7), as an uncertainty score to detect OOD samples, as described in Eq. (2.12).

5.3 Experiments.

Datasets. We validate HEAT on several benchmarks. The two commonly used CIFAR-10 and

CIFAR-100 [50] benchmarks, as in [89], [90]. We also conduct experiments on the large-scale

ImageNet [43] dataset.
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Evaluation metrics. We report the following standard metrics used in the literature [85]: the

area under the receiver operating characteristic curve (AUC, higher is better ø) and the false

positive rate at a threshold corresponding to a true positive rate of 95% (FPR95, smaller is

better ¿).

AUC =
q

xinœDin

q
xoutœDout

1 [E(xin) < E(xout)]
|Din| · |Dout|

(5.8)

FPR95 = 1
|Dout|

·
ÿ

xoutœDout

1 [E(xout) < ⁄] (5.9)

with ⁄ œ R such that for 95% of xin œ Din, we have E(xin) < ⁄

Implementation details. All experiments are conducted using PyTorch [277]. We use a ResNet-

34 classifier from the timm library [249] for the CIFAR-10 and CIFAR-100 datasets and a

ResNet-50 for the ImageNet experiments. HEAT consists in a 6 layers MLP trained for 20
epochs with Adam with learning rate 5e-6. The network input dimension is 512 (which is the

dimension of the penultimate layer of ResNet-34) for the CIFAR-10/100 benchmarks and 2048
(which is the dimension of the penultimate layer of ResNet-50) for the ImageNet benchmark.

The hidden dimension is 1024 for CIFAR-10/100 and 2048 for ImageNet, and the output di-

mension is 1. For SGLD sampling, we use 20 steps with an initial step size of 1e-4 linearly

decayed to 1e-5 and an initial noise scale of 5e-3 linearly decayed to 5e-4. We add a small

Gaussian noise with std 1e-4 to each input of the EBM network to stabilize training, as done in

previous works [218], [219]. The L2 coe�cient is set to 10. We use temperature scaling on the

mixture of Gaussian distributions’ energy with temperature TG = 1e3. The hyperparameters

for the CIFAR-10 and CIFAR-100 models are identical.

Baselines. We perform extensive validation of HEAT vs. several recent state-of-the-art base-

lines, including the maximum softmax probability (MSP) [85], ODIN [212], Energy-logits [94],

SSD [89], KNN [90] and ViM [211]. We apply our energy-based correction of EL, GMM and

GMMstd that we then denote as HEAT-EL, HEAT-GMM and HEAT-GMMstd. We choose those

priors as they can naturally be written as energy models as described in Sec. 5.2.1, furthermore,

they are strong baselines and combining them allows us to take advantage of their respective

strengths (discussed in Sec. 5.2.2). All the baselines are compared using the same backbone

trained with the standard cross-entropy loss.
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5.3.1 HEAT improvements.

In this section, we study the di↵erent components of HEAT. In Tab. 5.1 we show that

learning a residual correction term with HEAT improves the OOD detection performances

of prior scorers. In Tab. 5.2 we show the interest of learning a residual model as described

in Sec. 5.2.1 rather than a standard fully data-driven energy-based model. Finally, in Tab. 5.4

we show how using the energy composition improves OOD detection.

Table 5.1: Refinement of Energy-logits [94] (EL) and GMM, GMM with std-pooling (GMMstd)
with our energy-based correction on CIFAR-10 and CIFAR-100 as in-distribution datasets.
Results are reported with FPR95¿ / AUC ø.

Method
Near-OOD Mid-OOD Far-OOD

Average
C-100/10 TinyIN LSUN Places Textures SVHN

C
IF
A
R
-1
0

EL 48.4 / 86.9 41.9 / 88.2 33.7 / 92.6 35.7 / 91.0 30.7 / 92.9 4.9 / 99.0 32.6 / 91.8
HEAT-EL 47.3 / 88.0 40.7 / 88.9 30.8 / 93.4 33.8 / 91.8 28.8 / 93.9 4.5 / 99.1 31.0 / 92.5

GMM 52.6 / 89.0 50.9 / 89.5 47.1 / 92.4 46.4 / 91.2 13.1 / 97.8 0.9 / 99.8 35.1 / 93.3
HEAT-GMM 49.0 / 89.8 44.8 / 90.4 40.5 / 93.2 40.4 / 92.0 13.4 / 97.7 0.8 / 99.8 31.5 / 93.8

GMMstd 58.4 / 84.9 50.6 / 87.9 32.2 / 94.5 38.5 / 91.8 13.8 / 97.6 2.5 / 99.5 32.7 / 92.7
HEAT-GMMstd 56.1 / 86.1 47.8 / 88.7 28.2 / 95.2 35.8 / 92.5 13.3 / 97.5 2.7 / 99.4 30.7 / 93.2

C
IF
A
R
-1
00

EL 80.6 / 76.9 79.4 / 76.5 87.6 / 71.7 83.1 / 74.7 62.4 / 85.2 53.0 / 88.9 74.3 / 79.0
HEAT-EL 80.1 / 77.2 77.6 / 77.5 87.2 / 72.2 81.8 / 75.0 61.5 / 85.8 47.5 / 90.2 72.6 / 79.6

GMM 85.6 / 73.6 82.5 / 77.2 87.8 / 73.7 84.5 / 74.4 36.7 / 92.4 20.0 / 96.3 66.2 / 81.3
HEAT-GMM 84.2 / 74.8 80.5 / 78.5 86.4 / 74.8 82.7 / 75.9 37.9 / 92.2 17.8 / 96.7 64.9 / 82.1

GMMstd 91.4 / 67.9 84.3 / 74.8 83.4 / 75.2 83.5 / 75.2 40.6 / 91.3 36.7 / 93.1 70.0 / 79.6
HEAT-GMMstd 89.1 / 70.3 82.2 / 76.2 82.3 / 76.1 81.4 / 76.7 42.9 / 90.7 32.9 / 93.8 68.5 / 80.6

Correcting prior scorers. In Tab. 5.1 we demonstrate the e↵ectiveness of energy-based correc-

tion to improve di↵erent prior OOD scorers on two ID datasets: CIFAR-10 and CIFAR-100. We

show that across the two ID datasets and for all prior scorers, using a residual correction always

improves the aggregated results, e.g. for GMM -3.6 pts FPR95 on CIFAR-10 and -1.3 pts FPR95

on CIFAR-100. Furthermore, on near-OOD and mid-OOD learning our correction always im-

proves the prior scores, e.g. on LSUN with CIFAR-10 as ID dataset the correction improves

EL by -2.9 pts FPR95, GMM by -6.6 pts FPR95 and -4 pts FPR95 for GMMstd. On far-OOD

the corrected scorers performs at least on par with the base scorers, and can further improve it,

e.g. on SVHN when CIFAR-100 is the ID datasets, the correction improves by -5.5pts FPR95,
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-2.2 pts FPR95 and -3.8pts FPR95, EL, GMM, GMMstd respectively. Overall Tab. 5.1, clearly

validates the relevance of correcting the modeling assumptions of prior scorers with our learned

energy-based residual.

Learning a residual model. In Tab. 5.2 we compare learning an EBM vs. our residual training

using a GMM prior (HEAT-GMM) of Sec. 5.2 on CIFAR-10 and CIFAR-100. The EBM is a fully

data-driven approach, which learns the density of ID samples without any prior distribution

model. On both datasets, our residual training leads to better performances than the EBM,

e.g. +2.6 pts AUC on CIFAR-100. On near-OOD, both the residual training and the EBM

perform on par. On far-OOD, our residual training takes advantage of the good performances

of the prior scorer, i.e.GMM, and significantly outperforms the EBM, especially on CIFAR-100,

with e.g. +7.7 pts AUC on Textures. Our residual training combines the strengths of GMM and

EBMs: Gaussian modelization by design penalizes samples far away from the training dataset

and thus eases far-OOD’s detection, whereas EBM may overfit in this case. On the other

hand, near-OOD detection requires a too complex density estimation for simple parametric

distribution models such as GMMs.

Table 5.2: Comparison of learning a residual model, i.e. HEAT-GMM, vs. learning an EBM and
GMM. Results reported with AUC ø.

Method
Near-OOD Mid-OOD Far-OOD

Average
C-100/10 TinyIN LSUN Places Textures SVHN

C
-1
0 GMM 89.0 89.5 92.4 91.2 97.7 99.8 93.3

EBM 89.4 89.9 93.8 91.8 96.2 99.0 93.3
HEAT-GMM 89.8 90.4 93.2 92.0 97.7 99.8 93.8

C
-1
00

GMM 73.6 77.0 73.8 74.5 92.4 96.4 81.3
EBM 74.8 79.7 71.9 75.4 84.5 91.0 79.5
HEAT-GMM 74.8 78.5 74.8 75.9 92.2 96.7 82.1

Comparison to ResFlow. In Tab. 5.3 we compare HEAT to ResFlow [236] using results re-

ported in [89] and use a ResNet-50 trained with the supervised contrastive loss [278] on CIFAR-

100. HEAT outperforms ResFlow both on far-OOD detection by +0.8 pts AUC on SVHN and

+4.2 pts AUC. This shows the interest of using our HEAT models, which performs better and

is more expressive even when having orders of magnitude less layers. Indeed, ResFlow uses for

each layer (×4) of the network and for each class (×10) a 30 layers invertible neural network.
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Table 5.3: Comparison to ResFlow using a ResNet-50 on CIFAR-10 (ID) using near (CIFAR-
100) and far (SVHN) OOD datasets. Results are reported with AUC ø.

In-distribution CIFAR-10 CIFAR-10
(Out-of-distribution) (CIFAR-100) (SVHN)

ResFlow [236] 89.4 99.1

HEAT 93.6 99.9

Composing energy-based scorers. In Tab. 5.4 we show that composing di↵erent energy-based

scores (see Sec. 5.2.2), i.e. the selected OOD prior scorers with our energy-based correction

as described in Sec. 5.2.1, improves overall performances on CIFAR-10 and CIFAR-100. For

instance composing our HEAT-GMM and HEAT-GMMstd leads to improvements of all reported

results, i.e. on CIFAR-10 -5.1 pts FPR95 and +0.8 pts AUC and on CIFAR-100 -0.6 pts FPR95

and +0.6 pts AUC. Composing the three prior scorers leads to the best results, improving

over the best single scorer performances by great margins on CIFAR-10 with -7.1 pts FPR95

and +1 AUC and with smaller margins on CIFAR-100 -0.8 pts FPR95 and +1.1 pts AUC

on CIFAR-100. This shows the interest of composing di↵erent scorers as they detect di↵erent

types of OOD. Note that while the composition has the best performances, our correction model

(HEAT-GMM) already has competitive performances on CIFAR-10 and better performances on

CIFAR-100 than state-of-the-art methods reported in Tab. 5.5.

Table 5.4: Aggregated performances on CIFAR-10 and CIFAR-100 for the energy composition
of the refined OOD scorers of Tab. 5.1.

HEAT HEAT HEAT CIFAR-10 CIFAR-100
-GMM -GMMstd -EL FPR95¿ AUC ø FPR95¿ AUC ø

3 7 7 31.5 93.8 64.9 82.1
7 3 7 30.7 93.2 68.5 80.6
7 7 3 31.0 92.5 72.6 79.6
3 3 7 25.6 94.6 64.3 82.7
3 7 3 28.0 94.1 65.5 82.4
7 3 3 23.6 94.6 66.6 82.1

3 3 3 23.5 94.8 63.9 83.0

5.3.2 Comparison to state-of-the-art.

In this section, we present the results of HEAT vs. state-of-the-art methods. In Tab. 5.5 we

present our results with CIFAR-10, and CIFAR-100 as ID data, and in Tab. 5.6 we present our
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results on the large and complex ImageNet dataset.

CIFAR-10 results. In Tab. 5.5 we compare HEAT vs. state-of-the-art methods when using

CIFAR-10 as the ID dataset. First, we show that HEAT sets a new state-of-the-art on the

aggregated results. It outperforms the prior scorers it corrects, i.e. SSD+ by -11.6 pts FPR95

and Energy-logits by -9.1 pts FPR95. It also outperforms the previous state-of-the-art methods

ViM by -5.3 pts FPR95 and KNN by +1.1 pts AUC. Interestingly, we can see that HEAT

outperforms other methods because it improves OOD detection on near-, mid-, and far-OOD.

On near OOD, it outperforms KNN by -4.6 pts FPR95 on C-100 and Energy-logits by -6.1 pts

FPR95 on TinyIN. On mid-OOD detection, it outperforms ViM by -9.8 pts FPR95 on LSUN

and Energy-logits by -8.5 pts FPR95. Finally, on far-OOD, the performances are similar to

SSD+ which is by far the best performing method on this regime.

Table 5.5: Results on CIFAR-10 & CIFAR-100. All methods are based on a pre-trained
ResNet-34 trained on the ID dataset only. ø indicates larger is better, and ¿ the opposite. Best
results are in bold, second best underlined. Results are reported with FPR95¿ / AUC ø.

Method
Near-OOD Mid-OOD Far-OOD

Average
C-10/100 TinyIN LSUN Places Textures SVHN

C
IF
A
R
-1
0

MSP [85] 58.0 / 87.9 55.9 / 88.2 50.5 / 91.9 52.7 / 90.2 52.3 / 91.7 19.7 / 97.0 48.2 / 91.2
ODIN [212] 48.4 / 86.0 42.2 / 87.3 32.6 / 92.3 35.6 / 90.4 29.4 / 92.6 7.8 / 98.3 32.6 / 91.1
KNN [90] 47.9 / 90.3 43.1 / 90.6 36.1 / 94.1 37.9 / 92.7 24.9 / 96.0 8.1 / 98.6 33.0 / 93.7
ViM [211] 44.8 / 89.2 40.1 / 89.8 32.0 / 93.8 34.3 / 92.2 17.9 / 96.4 3.6 / 99.2 28.8 / 93.4
SSD+ [89] 52.6 / 89.0 50.9 / 89.5 47.1 / 92.4 46.4 / 91.2 13.1 / 97.8 0.9 / 99.8 35.1 / 93.3
EL [94] 48.4 / 86.9 41.9 / 88.2 33.7 / 92.6 35.7 / 91.0 30.7 / 92.9 4.9 / 99.0 32.6 / 91.8
DICE [92] 51.0 / 85.7 44.3 / 87.0 33.3 / 92.3 35.6 / 90.5 29.3 / 92.8 3.6 / 99.2 32.8 / 91.3

HEAT (ours) 43.1 / 90.2 35.7 / 91.3 22.2 / 95.8 27.4 / 93.9 11.3 / 97.9 1.1 / 99.8 23.5 / 94.8

C
IF
A
R
-1
00

MSP [85] 80.0 / 76.6 78.3 / 77.6 83.5 / 74.7 81.0 / 76.4 72.1 / 81.0 62.0 / 86.4 76.1 / 78.8
ODIN [212] 81.4 / 76.4 78.7 / 76.2 86.1 / 72.0 82.6 / 74.5 62.4 / 85.2 80.7 / 80.4 78.6 / 77.5
KNN [90] 82.1 / 74.5 76.7 / 80.2 90.1 / 74.4 83.2 / 75.5 47.2 / 90.2 35.6 / 93.6 69.2 / 81.4
ViM [211] 85.8 / 74.3 77.5 / 79.6 86.2 / 75.3 79.8 / 77.6 42.3 / 91.9 41.3 / 93.2 68.8 / 82.0
SSD+ [89] 85.6 / 73.6 82.5 / 77.2 87.8 / 73.7 84.5 / 74.4 36.7 / 92.4 20.0 / 96.3 66.2 / 81.3
EL [94] 80.6 / 76.9 79.4 / 76.5 87.6 / 71.7 83.1 / 74.7 62.4 / 85.2 53.0 / 88.9 74.3 / 79.0
DICE [92] 81.2 / 75.8 82.4 / 74.2 87.8 / 70.4 84.5 / 73.1 63.0 / 83.8 51.9 / 88.1 75.2 / 77.6

HEAT (ours) 83.7 / 75.8 77.7 / 79.5 83.4 / 76.3 80.0 / 77.8 37.1 / 92.7 21.7 / 96.0 63.9 / 83.0
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CIFAR-100 results. In Tab. 5.5 we compare HEAT vs. state-of-the-art method when using

CIFAR-100 as the ID dataset. HEAT outperforms state-of-the-art methods on aggregated

results, with -2.3 pts FPR95 and +1.7 pts AUC vs.SSD+. HEAT takes advantage of SSD+ on

far-OOD and outperforms other methods (except SSD+) by large margins -13.9 pts FPR95 and

+2.4 pts AUC on SVHN vs. the best non-parametric data-driven density estimation, i.e. KNN.

Also, HEAT significantly outperforms SSD+ for near-OOD and mid-OOD, e.g.-4.8 pts FPR95

on TinyIN or -4.5 pts FPR95 on Places.

ImageNet results. In Tab. 5.6 we compare HEAT on the recently introduced [90] ImageNet

OOD benchmark. HEAT sets a new state-of-the-art on this ImageNet benchmark for the

aggregated results, with 34.4 FPR95 and 92.6 AUC which outperforms by -1.5 pts FPR95 and

+1.7 pts AUC vs. the previous best performing method DICE. Furthermore, HEAT improves

the aggregated results because it is a competitive method on each dataset. On far-OOD,

i.e. Textures, it performs on par with SSD+, i.e. 5.7 FPR95, the best performing method

on this dataset. On mid-OOD, it is the second-best method on SUN and on Places behind

DICE. Finally, on near-OOD it performs on par with DICE. This shows that HEAT can be

jointly e↵ective on far-, mid-, and near-OOD detection, whereas state-of-the-art methods are

competitive for a specific type of OOD only. For instance, the performance of DICE drops

significantly on Textures. This also shows that HEAT performs well on larger scale and more

complex datasets such as ImageNet. Finally, in Appendix C.2.1 we show that HEAT is also

state-of-the-art when using another type of neural network, i.e. Vision Transformer [46].

Table 5.6: Results on ImageNet. All methods use an ImageNet pre-trained ResNet-50. Results
are reported with FPR95¿ / AUC ø.

Method iNaturalist SUN Places Textures Average

MSP [85] 52.8 / 88.4 69.1 / 81.6 72.1 / 80.5 66.2 / 80.4 65.1 / 82.7
ODIN [212] 41.1 / 92.3 56.4 / 86.8 64.2 / 84.0 46.5 / 87.9 52.1 / 87.8
ViM [211] 47.4 / 92.3 62.3 / 86.4 68.6 / 83.3 15.2 / 96.3 48.4 / 89.6
KNN [90] 60.0 / 86.2 70.3 / 80.5 78.6 / 74.8 11.1 / 97.4 55.0 / 84.7
SSD+ [89] 50.0 / 90.7 66.5 / 83.9 76.5 / 78.7 5.8 / 98.8 49.7 / 88.0
EL [94] 53.7 / 90.6 58.8 / 86.6 66.0 / 84.0 52.4 / 86.7 57.7 / 87.0
DICE [92] 26.6 / 94.5 36.5 / 90.8 47.9 / 87.5 32.6 / 90.4 35.9 / 90.9

HEAT (ours) 28.1 / 94.9 44.6 / 90.7 58.8 / 86.3 5.9 / 98.7 34.4 / 92.6
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5.3.3 Model analysis.

In this section, we show how HEAT works in a wide range of settings. We show in Fig. 5.3

the impact of ⁄ and — and in Fig. 5.4 that HEAT performs well in low data regimes.

Robustness to ⁄. We show in Fig. 5.3a the impact of ⁄ on the FPR95 for CIFAR-10 as the

ID dataset. We can observe that for a wide range of ⁄, e.g. [2, 50], our energy-based correction

improves the OOD detection of the prior scorer, i.e. GMM, with ideal values close to ≥ 10. ⁄

controls the cooperation between the prior scorer and the learned residual term, which can be

observed on Fig. 5.3a. When setting ⁄ to a value that is too low, there is no control over the

energy. The prior density is completely disregarded, which will eventually lead to optimization

issues resulting in poor detection performances. On the other hand, setting ⁄ to a value too

high (e.g. 100) will constrain the energy too much, resulting in performances closer to that of

GMM. On CIFAR-10 as the ID dataset, we observe similar trends in Appendix C.2.2.

(a) ⁄ vs.FPR95¿ (b) — vs.FPR95¿

Figure 5.3: On CIFAR-10 ID: (a) impact of ⁄

in Eq. (5.6) vs. FPR95 and (b) analysis of —

in Eq. (5.7) vs. FPR95.

Figure 5.4: Impact on performances (AUCø

on CIFAR-100) vs. the number of training
data for GMM density, fully data-driven EBM,
and HEAT. Our hybrid approach maintains
strong performances in low-data regimes, in
contrast to the fully data-driven EBM.

Robustness to —. We show in Fig. 5.3b that HEAT is robust wrt. — in Eq. (5.7). We remind

that — æ 0 is equivalent to the mean, — æ ≠Œ is equivalent to the minimum and — æ Œ

is equivalent to the maximum. We show that HEAT is stable to di↵erent values of —, and

performs best with values close to 0. Note that we used — = 0 for HEAT in Tab. 5.6 and

Tab. 5.5 but using a lower value, i.e.-1, leads to better results. We hypothesize that using a

more advanced — selection methods could further improve performances.
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Low data regime. We study in Fig. 5.4 the stability of HEAT on low data regimes. Specifically,

we restrict the training of HEAT to a subset of the ID dataset, i.e. CIFAR-100. We compare

HEAT to a fully data-driven EBM and to a GMM. The EBM is very sensitive to the lack of

training data, with a gap of 12 pts AUC between 10% of data and 100%. On the other hand,

GMM is quite robust to low data regimes, with a minor gap of 0.3 pts AUC between 10% and

100%. HEAT builds on this stability and is able to improve the performance of GMM for all

tested sampling ratios. HEAT is very stable to low data regimes which makes it easier to use

than a standard EBM, it is also able to improve GMM even when few training data are available.

5.3.4 Qualitative results.

We show qualitative results of HEAT vs. EL [94] and SSD [89] for CIFAR-10 (ID) on Fig. 5.5

with LSUN as OOD dataset on Fig. 5.5a and Textures as OOD dataset on Fig. 5.5b. We display

in red OOD samples incorrectly identified as ID samples, i.e. below the threshold at 95% of

ID samples, and in green OOD samples correctly detected, i.e. are above the 95% threshold.

On Fig. 5.5a, we can see that EL and SSD detect di↵erent OOD samples. HEAT is able through

the correction and composition to recover those mis-detected OOD samples. On Fig. 5.5b we

can see that SSD performs well on Textures, a far-OOD dataset, however HEAT is able to

recover a mis-detected OOD sample. Fig. 5.5a and Fig. 5.5b qualitatively show how HEAT is

able to better mis-detect OOD samples.
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(a) CIFAR-10 (ID) vs. LSUN (OOD)

(b) CIFAR-10 (ID) vs. Textures (OOD).

Figure 5.5: Qualitative comparison of HEAT vs. EL [94] and SSD [89] with CIFAR-10 (ID) vs.
LSUN (OOD) Fig. 5.5a and Textures (OOD) Fig. 5.5b. Samples in green are correctly detected
as OOD (above the 95% of ID threshold), samples in red are incorrectly predicted as ID, i.e.
an energy lower than the threshold.

5.4 Conclusion.

We have introduced HEAT which leverages the versatility of the EBM framework to provide

a strong post-hoc OOD detection method e↵ective on both far and near-OODs. HEAT i)

corrects prior OOD detectors to boost their detection performances and ii) naturally combines

the corrected detectors to take advantage of their strengths. We perform extensive experiments
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to validate HEAT on several benchmarks, highlighting the importance of the correction and

the composition, and showing that HEAT sets new state-of-the-art performances on CIFAR-

10, CIFAR-100, and on the large-scale ImageNet dataset. HEAT is also applicable to di↵erent

backbones, and remains e�cient in low-data regimes. HEAT can also be extended to K prior

scorers, provided that they can write as an EBM and that they are di↵erentiable in order to

perform SGLD sampling. Interesting extensions would include adapting the approach to other

state-of-the-art OOD detectors, such as a soft-KNN [90] or ViM [211]

HEAT tackles another aspect of model robustness that is involved post-training, which was

not the case in Chapter 4. It can also be used to detect images that should not be classified at

all, again this was not the case in Chapter 4
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Chapter 6

Conclusion and perspectives

We first summarize the contributions that we proposed in this thesis. We then discuss

perspective for future works, starting with ongoing works, including adaptation of HAPPIER

and ROADMAP to the hierarchical and multi-label setting and local prompt learning for OOD

detection. We also talk about long term perspectives, with adaptation of foundation models to

image retrieval and image retrieval with human preferences.
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6.1. CONTRIBUTIONS.

6.1 Contributions.

In this thesis, we improved robustness in deep learning from three perspectives: in optimiza-

tion, in mistake severity and at inference time. In Chapters 3 and 4 we studied robustness during

training. More precisely, in Chapter 3 we ensured that the training objectives are aligned with

the evaluation metrics, in Chapter 4 we trained models using hierarchical semantic relations

that significantly reduced the severity of their mistakes. Finally, in Chapter 5 we investigated

post-hoc OOD detection, by using an ensemble of OOD detectors to remove outliers and avoid

the processing of uncertain images.

Optimization of Ranking Losses for Image retrieval In this chapter, we first introduce a

framework to address the issues of non-di↵erentiability and non-decomposability of ranking

losses. It consists of a smooth and di↵erentiable approximation of the rank that has sound

theoretical properties and corrects shortcomings of previous rank approximations. We use an

additional training objective that supports the decomposability of the target metric. It does

not entail computational overhead and can be trained with mini-batches. This framework is

general it can be used to optimize losses for fine-grained image retrieval such as AP or R@k,

and also to optimize non-binary metrics for hierarchical image retrieval, e.g. H-AP or NDCG.

We show that this framework leads to very competitive results on image retrieval benchmarks.

Hierarchical Image Retrieval for Robust Ranking In this chapter, we address the severity

of mistakes made by traditional image retrieval models. We leverage the hierarchical semantic

relations between labels as a proxy for the severity of mistakes. We then integrate these relations

during training to make image retrieval systems more robust. We extend the average precision

to the hierarchical settings, H-AP, and use the framework from Chapter 3 to optimize graded

ranking losses such as H-AP and the NDCG. The models optimized with hierarchical ranking

losses perform on par with state-of-the-art standard image retrieval methods results on fine-

grained metrics. We then show quantitatively and qualitatively that these models produce more

robust rankings. We also propose a semi-automatic pipeline to annotate a fine-grained dataset

with hierarchical labels, which we apply to the GLDv2 landmark retrieval dataset. This results

in the first hierarchical landmark retrieval dataset, H-GLDv2.

Post-hoc out-of-distribution detection In this chapter, we address DNN robustness at in-

ference time by introducing HEAT, a new method for out-of-distribution (OOD) detection.

Specifically, we look at post-hoc OOD detection. Post-hoc methods allow using o↵-the-shelf
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models with strong predictive performances without the need for cumbersome fine-tuning. We

use the energy-based model framework to learn a residual term to correct less-expressive prior

OOD scorers of the literature. Corrected OOD scorers better approximate the density of in-

distribution features. We then show that combining corrected prior OOD scorers allows lever-

aging their di↵erent modeling biases, thus improving overall OOD detection performances. We

conduct extensive experimental validation to both show the interest in the di↵erent components

of HEAT and that HEAT compares well against state-of-the-art methods.

6.2 Perspectives for futures works.

6.2.1 Ongoing work.

(a) Stock logo*. (b) Annotations of WIPO’s AI based Vienna classification assistant.

Figure 6.1: The logo of Fig. 6.1a can be annotated with at least three labels from the Vienna
classification, as seen on Fig. 6.1b.

*Image taken from: https://stock.adobe.com/
**WIPO’s Vienna classification AI: https://vienna-assistant.branddb.wipo.int/

Adaptation of ROADMAP and HAPPIER to multi-label settings. Coexya’s data are both

multi-labeled and hierarchical. Trademark logos are annotated using Vienna’s classification1,

a hierarchical standardized classification for trademark logos. Each trademark logo can be

annotated with several labels, as seen on Fig. 6.1. We successfully adapted ROADMAP to

the multi-label by computing an average precision for each label, as can be done in multi-

label classification to evaluate models [279]. Computing an AP per label converts the multi-

label classification task to multiple binary problems. However, this adaptation does not take

into account the relations between labels. For instance, it will penalize in the same manner

1https://www.wipo.int/classifications/vienna/en/index.html
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retrieving an instance of “3.9: AQUATIC ANIMALS, SCORPIONS” when querying with an

image of “1.3: SUN” than retrieving an image of “1.1: STARS, COMETS”, while both 1.3

and 1.1 are subcategories of “Category 1: CELESTIAL BODIES, NATURAL PHENOMENA,

GEOGRAPHICAL MAPS” and semantically closer. We are working on designing a relevance

function for HAPPIER to address both the multi-label setting and the hierarchical relations

between labels. Although the first tests are encouraging, designing a relevance function that

aligns with user requirements will take a bit more work, notably to adjust the relative weights

given to the hierarchical relations. More broadly, working on adapting the relevance function of

HAPPIER to diverse settings will allow verifying that our framework for the direct optimization

works on settings outside traditional retrieval, and confirm the interest of the H-AP objective

on a broad set of tasks.
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Figure 6.2: Image taken from [280]. The context used to prompt CLIP is learned and allows
e�cient adaptation to downstream datasets.

Robustness of vision-language models. Vision-language models (VLMs) like CLIP [12] are

now broadly used to perform classification on downstream datasets. There is an active research

area to study their robustness, e.g. their OOD detection capabilities. For instance, in [281] the

authors use zero-shot CLIP for OOD detection. They specify the concepts that are considered

in-distribution using their names, without CLIP being trained specifically on them. This is a

new paradigm for OOD detection, indeed OOD samples are not defined based on the training

data, but rather based on the downstream task. Furthermore, methods have emerged to adapt
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VLMs e�ciently to downstream datasets. For instance, one direction is to learn the prompt used

to query CLIP’s language model as illustrated on Fig. 6.2, e.g. CoOp [280] or MaPLe [282].

The OOD detection capabilities of these methods has been discussed in recent papers, e.g.

LoCoOp [283] or Catex [284]. Recent methods like [285] leverage both local and global features

of CLIP in a zero-shot manner, optimizing this criterion during prompt learning could make

text-based classification both more accurate and more robust for OOD detection.

6.2.2 Long-term perspectives.

Figure 6.3: Image taken from [150]. The authors of [150] propose to adapt the foundation
model Dino [147] to image retrieval. They do so by proposing a multitask framework inspired
from [151] to optimize the parameter e�cient adapters inspired by the NLP literature [286].

E�cient adaptation for image retrieval. While foundation models exhibit impressive gener-

alization capabilities, they often fall short in terms of performance when compared to expert

models that are fine-tuned on specific downstream tasks, such as in image retrieval [36]. Con-

sequently, the adaptation of foundation models to image retrieval has emerged as a significant

research challenge. Researchers have explored numerous methods to adapt these models to spe-

cialized tasks. These approaches encompass prompt learning [280], [287], where only specific

tokens are learned, as well as adapters [150], [288] see Fig. 6.3, which interleave new parame-

ters within the model’s existing layers. Robust fine-tuning has also been employed, involving

full fine-tuning of foundation models followed by weight averaging [289]. Recent methods have
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leveraged the mixture of experts layer [290] principle to interleave a “mixture of adapters” in

foundation models. It allows the adaptation to multiple datasets in [291] or to fine-grained

classification in [292]. Leveraging this style of adaptation may help adapt foundation models

to the diverse domains present in the recent universal image retrieval benchmarks [36], [150].

Image retrieval with human preferences. One desired property of deep learning is to match

human expectations. For instance, annotations used to train and evaluate recommender sys-

tems in information retrieval can rely on human ratings [293]. With the development of Large-

Language-Models (LLM) [2]–[5] embedded in mainstream products, e.g. ChatGPT, the domain

of natural language processing [48], [294] has been at the forefront of the “alignment” of DNN

with human preferences. It relies on a new paradigm that was introduced to fine-tune models

with human preferences, namely Reinforcement Learning with Human Feedback (RLHF) [183]

that is based on Reinforcement Learning principle, e.g. PPO [184] in [183] or Reinforce [295]

in [185]. The final pipeline involves multiple steps, starting from pre-training on large unla-

beled data, supervised fine-tuning on more curated data, and finally RLHF with policy trained

on human-annotated datasets. Similar approaches have been designed in computer vision to

optimize a task reward in [185] or in image editing [186]. Image retrieval is a task where human

preferences are also the end goal, e.g. for Coexya’s Acsepto. To optimize human preferences,

the first step would be to collect a dataset, e.g. by having human annotators rank several

retrieval results for a query. Then, because [183] and [185] require stochastic models, we would

need to adapt these methods for deterministic image retrieval models. This fine-tuning process

would allow image based search engines to more closely match humans’ expectations.
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[64] F. Radenović, G. Tolias, and O. Chum, “@articleradenovic2018fine, title=Fine-tuning
CNN image retrieval with no human annotation, author=Radenović, Filip and Tolias,
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Niu, and S. Sabato, Eds., ser. Proceedings of Machine Learning Research, vol. 162,
PMLR, 2022, pp. 20 827–20 840. [Online]. Available: https : / / proceedings . mlr .
press/v162/sun22d.html.

[91] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-
distribution samples and adversarial attacks,” in Advances in Neural Information Pro-
cessing Systems, 2018.

[92] Y. Sun and Y. Li, “Dice: leveraging sparsification for out-of-distribution detection,” in
European Conference on Computer Vision, 2022.

[93] Y. LeCun, S. Chopra, R. Hadsell, and F. J. Huang,“A tutorial on energy-based learning,”
in Predicting Structured Data, MIT Press, 2006.

[94] W. Liu, X. Wang, J. D. Owens, and Y. Li, “Energy-based Out-of-distribution Detection,”
in Advances in Neural Information Processing Systems, 2020. arXiv: 2010.03759v4.
[Online]. Available: https://github.com/wetliu/energy_ood.

[95] E. Ramzi, N. Thome, C. Rambour, N. Audebert, and X. Bitot, “Robust and decompos-
able average precision for image retrieval,”NeurIPS, 2021.

[96] E. Ramzi, N. Audebert, N. Thome, C. Rambour, and X. Bitot, “Hierarchical average
precision training for pertinent image retrieval,” in ECCV, 2022.

[97] M. Lafon, E. Ramzi, C. Rambour, and N. Thome, “Hybrid energy based model in the
feature space for out-of-distribution detection,” arXiv preprint arXiv:2305.16966, 2023.

[98] E. Ramzi, N. Audebert, C. Rambour, A. Araujo, X. Bitot, and N. Thome,“Optimization
of rank losses for image retrieval,” arXiv preprint arXiv:2309.08250, 2023.

[99] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: ideas, influences, and trends
of the new age,”ACM Computing Surveys (Csur), vol. 40, no. 2, pp. 1–60, 2008.

[100] A. Miech, J.-B. Alayrac, I. Laptev, J. Sivic, and A. Zisserman, “Thinking fast and slow:
e�cient text-to-visual retrieval with transformers,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 9826–9836.

[101] C. Jia, Y. Yang, Y. Xia, et al., “Scaling up visual and vision-language representation
learning with noisy text supervision,” in International conference on machine learning,
PMLR, 2021, pp. 4904–4916.

[102] G. Delmas, R. S. de Rezende, G. Csurka, and D. Larlus, “Artemis: attention-based re-
trieval with text-explicit matching and implicit similarity,”arXiv preprint arXiv:2203.08101,
2022.

[103] A. Baldrati, L. Agnolucci, M. Bertini, and A. Del Bimbo, “Zero-shot composed image
retrieval with textual inversion,” arXiv preprint arXiv:2303.15247, 2023.

135

https://proceedings.mlr.press/v162/sun22d.html
https://proceedings.mlr.press/v162/sun22d.html
https://arxiv.org/abs/2010.03759v4
https://github.com/wetliu/energy_ood


BIBLIOGRAPHY

[104] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang, “Deep relative distance learning:
tell the di↵erence between similar vehicles,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2167–2175.

[105] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
journal of computer vision, vol. 60, pp. 91–110, 2004.

[106] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo,“Evaluating bag-of-visual-words
representations in scene classification,” in Proceedings of the international workshop on
Workshop on multimedia information retrieval, 2007, pp. 197–206.

[107] K. Mikolajczyk and C. Schmid, “Scale & a�ne invariant interest point detectors,” Inter-
national journal of computer vision, vol. 60, pp. 63–86, 2004.

[108] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with large
vocabularies and fast spatial matching,” in 2007 IEEE conference on computer vision
and pattern recognition, IEEE, 2007, pp. 1–8.

[109] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory,
vol. 28, no. 2, pp. 129–137, 1982.

[110] J. MacQueen et al., “Some methods for classification and analysis of multivariate obser-
vations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, Oakland, CA, USA, vol. 1, 1967, pp. 281–297.

[111] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06),
Ieee, vol. 2, 2006, pp. 2161–2168.

[112] R Baeza-Yates, “Modern information retrieval,” Addison Wesley google schola, vol. 2,
pp. 127–136, 1999.

[113] G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval with integral max-pooling
of cnn activations,” arXiv preprint arXiv:1511.05879, 2015.

[114] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless pooling of deep con-
volutional activation features,” in Computer Vision–ECCV 2014: 13th European Con-
ference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII 13, Springer,
2014, pp. 392–407.

[115] A. Babenko and V. Lempitsky, “Aggregating deep convolutional features for image re-
trieval,” arXiv preprint arXiv:1510.07493, 2015.

[116] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes for image re-
trieval,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part I 13, Springer, 2014, pp. 584–599.

[117] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, “End-to-end learning of deep visual
representations for image retrieval,” Int. J. Comput. Vis., 2017.

[118] R. Hadsell, S. Chopra, and Y. LeCun,“Dimensionality reduction by learning an invariant
mapping,” in CVPR, 2006.

136



BIBLIOGRAPHY

[119] J. L. Schonberger, F. Radenovic, O. Chum, and J.-M. Frahm, “From single image query
to detailed 3d reconstruction,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 5126–5134.

[120] F. Radenovic, J. L. Schonberger, D. Ji, J.-M. Frahm, O. Chum, and J. Matas,“From dusk
till dawn: modeling in the dark,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 5488–5496.

[121] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, “Deep image retrieval: learning global
representations for image search,” in Computer Vision–ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14,
Springer, 2016, pp. 241–257.

[122] C. Liao, T. Tsiligkaridis, and B. Kulis, “Supervised metric learning to rank for retrieval
via contextual similarity optimization,” in International Conference on Machine Learn-
ing, PMLR, 2023, pp. 20 906–20 938.

[123] Y. Zhu, X. Gao, B. Ke, R. Qiao, and X. Sun, “Coarse-to-fine: learning compact discrim-
inative representation for single-stage image retrieval,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 11 260–11 269.

[124] J. Yan, L. Luo, C. Deng, and H. Huang, “Unsupervised hyperbolic metric learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 12 465–12 474.

[125] A. Ermolov, L. Mirvakhabova, V. Khrulkov, N. Sebe, and I. Oseledets, “Hyperbolic
vision transformers: combining improvements in metric learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 7409–
7419.

[126] S. Kim, B. Jeong, and S. Kwak,“Hier: metric learning beyond class labels via hierarchical
regularization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 19 903–19 912.

[127] V. Khrulkov, L. Mirvakhabova, E. Ustinova, I. Oseledets, and V. Lempitsky,“Hyperbolic
image embeddings,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 6418–6428.

[128] S. Shao, K. Chen, A. Karpur, Q. Cui, A. Araujo, and B. Cao,“Global features are all you
need for image retrieval and reranking,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 11 036–11 046.

[129] J. Revaud, P. Weinzaepfel, C. De Souza, et al., “R2d2: repeatable and reliable detector
and descriptor,” arXiv preprint arXiv:1906.06195, 2019.

[130] P. Weinzaepfel, T. Lucas, D. Larlus, and Y. Kalantidis, “Learning super-features for
image retrieval,” arXiv preprint arXiv:2201.13182, 2022.

[131] C. H. Song, J. Yoon, S. Choi, and Y. Avrithis, “Boosting vision transformers for im-
age retrieval,” in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023, pp. 107–117.

137



BIBLIOGRAPHY
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[143] K. Järvelin and J. Kekäläinen,“Cumulated gain-based evaluation of ir techniques,”ACM
TOIS, 2002.

[144] W. B. Croft, D. Metzler, and T. Strohman, Search engines: Information retrieval in
practice. Addison-Wesley Reading, 2010.

138



BIBLIOGRAPHY
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[198] J. Kekäläinen and K. Järvelin, “Using graded relevance assessments in ir evaluation,”
Journal of the American Society for Information Science and Technology, 2002.

[199] C. Burges, T. Shaked, E. Renshaw, et al., “Learning to rank using gradient descent,” in
ICML, 2005.

[200] C. Burges, R. Ragno, and Q. Le, “Learning to rank with nonsmooth cost functions,” in
NeurIPS, 2006.

[201] M. Taylor, J. Guiver, S. Robertson, and T. Minka, “Softrank: optimizing non-smooth
rank metrics,” in WSDM, 2008.

[202] S. Bruch, M. Zoghi, M. Bendersky, and M. Najork, “Revisiting approximate metric
optimization in the age of deep neural networks,” in SIGIR, 2019.

[203] G. Dupret and B. Piwowarski, “Model based comparison of discounted cumulative gain
and average precision,” Journal of Discrete Algorithms, 2013.

[204] G. Dupret and B. Piwowarski, “A user behavior model for average precision and its
generalization to graded judgments,” in SIGIR, 2010.

[205] S. Kim, M. Seo, I. Laptev, M. Cho, and S. Kwak, “Deep metric learning beyond binary
supervision,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2288–2297.

[206] Z. Yang, M. Bastan, X. Zhu, D. Gray, and D. Samaras, “Hierarchical proxy-based loss
for deep metric learning,” in Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, 2022, pp. 1859–1868.

[207] D. Zhang, Y. Li, and Z. Zhang, “Multi-scale similarity aggregation for dynamic metric
learning,” in Proceedings of the 31st ACM International Conference on Multimedia, 2023,
pp. 125–134.

[208] J. Yang, K. Zhou, Y. Li, and Z. Liu,“Generalized out-of-distribution detection: a survey,”
arXiv preprint arXiv:2110.11334, 2021.

142



BIBLIOGRAPHY

[209] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep Anomaly Detection with Outlier
Exposure,” in ICLR, 2019. arXiv: 1812.04606v3. [Online]. Available: https://github.
com/hendrycks/outlier-exposure..
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[255] F. Radenović, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Revisiting oxford and
paris: large-scale image retrieval benchmarking,” in CVPR, 2018.

[256] T. Qin and T. Liu, “Introducing LETOR 4.0 datasets,”CoRR, 2013.

[257] O. Chapelle and Y. Chang, “Yahoo! learning to rank challenge overview,” in Proceedings
of the learning to rank challenge, 2011.

[258] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-grained
categorization,” in 3dRR Workshop, 2013.

[259] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, “Deepfashion: powering robust clothes
recognition and retrieval with rich annotations,” in CVPR, 2016.

146

https://arxiv.org/abs/2111.03042
https://energy-based-model.github.io/comet/%20http://arxiv.org/abs/2111.03042
https://energy-based-model.github.io/comet/%20http://arxiv.org/abs/2111.03042
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861


BIBLIOGRAPHY

[260] E. W. Wilt and A. V. Harrison, “Creating a semantic hierarchy of SUN database object
labels using WordNet,” in Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications III, vol. 11746, 2021.

[261] D. Chen, G. Baatz, K. Koser, et al., “City-Scale Landmark Identification on Mobile
Devices,” in CVPR, 2011.

[262] Y. Avrithis, G. Tolias, and Y. Kalantidis, “Feature Map Hashing: Sub-linear Indexing
of Appearance and Global Geometry,” in Proc. ACM MM, 2010.
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Appendix A

Supplementary material: Optimization of
Ranking Losses for Image retrieval

A.1 Theoretical analysis.

A.1.1 Contradictory gradient flow for positives samples.

In the theoretical analysis of the main manuscript Sec. 3.4.1, we write that:

ˆLSmoothAP

ˆs1
= ≠

ˆLSmoothAP

ˆs2

To see this, we write:

ˆLSmoothAP

ˆs1
= ˆLSmoothAP

ˆ rank+(x1)
·

ˆ rank+(x1)
ˆs1

+ ˆLSmoothAP

ˆ rank+(x2)
·

ˆ rank+(x2)
ˆs1

+ ˆLSmoothAP

ˆ rank≠(x1)
·

ˆ rank≠(x1)
ˆs1

+ ˆLSmoothAP

ˆ rank≠(x2)
·

ˆ rank≠(x2)
ˆs1

Because rank≠(x2) = ‡( s3≠s2
· ), we have ˆ rank≠(x2)

ˆs1
= 0 and ˆ rank≠(x1)

ˆs1
= 0 in the example

of Fig. 3.8, because rank≠(x1) = ‡( s3≠s1
· ) and s3 ≠ s1 falls into the saturation regime of the

sigmoid. We get a similar result for the derivative of LSmoothAP wrt. s2 :

ˆLSmoothAP

ˆs2
= ˆLSmoothAP

ˆ rank+(x1)
·

ˆ rank+(x1)
ˆs2

+ ˆLSmoothAP

ˆ rank+(x2)
·

ˆ rank+(x2)
ˆs2

Furthermore, we have :
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Figure A.1: The worst case when computing the global AP would be that each batch is juxta-
posed.

ˆ rank+(x1)
ˆs1

= ≠
ˆ rank+(x1)

ˆs2

Indeed rank+(x1) = 1 + ‡( s2≠s1
· ), such that ˆ rank+(x1)

ˆs1
= ≠· · ‡( s2≠s1

· )
1
1 ≠ ‡( s2≠s1

· )
2

and
ˆ rank+(x1)

ˆs2
= · · ‡( s2≠s1

· )
1
1 ≠ ‡( s2≠s1

· )
2
. Similarly, the derivatives of rank+(x2) wrt. s1 and

s2 also have opposite signs: ˆ rank+(x2)
ˆs1

= ≠
ˆ rank+(x2)

ˆs2
.

It concludes the proof that ˆLSmoothAP
ˆs1

= ≠
ˆLSmoothAP

ˆs2
. ⇤

A.1.2 Upper bounds on the decomposability gap.

A.1.3 Proof of Eq. (3.18): Upper bound on the DGAP with no LDG.

We choose a setting for the proof of the upper bound similar to the one used for training,

i.e. all the batch have the same size, and the number of positive instances per batch (i.e. �+
b )

is the same.

Eq. (3.18) gives an upper bound for DG. This upper bound is given in the worst case:

when the AP has the lowest value guaranteed by the AP on each batch. We illustrate this case

in Fig. A.1.

In Eq. (3.18) the 1 in the right-hand term comes from the average of AP over all batches:

1
K

Kÿ

b=1
APb

i(◊) = 1

We then justify the term in the parenthesis of Eq. (3.18), which is the lower bound of the

AP. In the global ordering the positive instances are ranked after all the positive instances
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from previous batches giving the following rank+: j + |�+
1 | + · · · + |�+

b≠1|, with j the rank+ in

the batch, Positive instances are also ranked after all negative instances from previous batches

giving rank≠: |�≠

1 | + · · · + |�≠

b≠1|. ⇤

A.1.4 Proof of Eq. (3.19) Upper bound on the DG with LDG.

We now write that each positive instance that respects the constraint of LDG is ranked after

the positive instances of previous batches that respect the constraint giving the following rank+:

j + G
+
1 + · · · + G

+
b≠1, with j the rank+ in the current batch. Positive instances are also ranked

after the negative instances of previous batches that do not respect the constraints, yielding

rank≠ : E
≠

1 + · · · + E
≠

b≠1.

We then write that positive instances that do not respect the constraints are ranked after all

positive instances from previous batches and the positive instances respecting the constraints

of the current batch, giving rank+ : j + G
+
b |�+

1 | + · · · + |�+
b≠1|. They also are ranked after all

the negative instances from previous batches giving rank≠ : |�≠

1 | + · · · + |�≠

b≠1|. ⇤
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Appendix B

Supplementary material: Hierarchical
Image Retrieval for Robust Ranking

B.1 Proof of Property 1.

Denoting �wAP := qL
l=1 wl · AP

(l), we obtain from Eq. (4.8):

�wAP =
Lÿ

l=1
wl ·

1
|�+,l|

ÿ

kœ�+,l

rank+,l(k)
rank(k) (B.1)

We define ŵl = wl
|�+,l|

to ease notations, so:

�wAP =
Lÿ

l=1
ŵl

ÿ

kœ�+,l

rank+,l(k)
rank(k) (B.2)

We define 1(k, l) = 1
Ë
k œ �+,l

È
so that we can sum over �+ instead of �+,l and inverse the

summations. Note that rank does not depend on l, contrary to rank+,l.

�wAP =
Lÿ

l=1

ÿ

kœ�+

ŵl · 1(k, l) · rank+,l(k)
rank(k) (B.3)

=
ÿ

kœ�+

Lÿ

l=1

ŵl · 1(k, l) · rank+,l(k)
rank(k) (B.4)

=
ÿ

kœ�+

qL
l=1 1(k, l) · ŵl · rank+,l(k)

rank(k) (B.5)
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We replace rank+,l in Eq. (B.5) with its definition from Eq. (4.8):

�wAP =
ÿ

kœ�+

qL
l=1 1(k, l) · ŵl ·

1
1 + q

jœ�+,l H(sj ≠ sk)
2

rank(k) (B.6)

=
ÿ

kœ�+

qL
l=1 1(k, l) · ŵl + qL

l=1
q

jœ�+,l 1(k, l) · ŵl · H(sj ≠ sk)
rank(k) (B.7)

=
ÿ

kœ�+

qL
l=1 1(k, l) · ŵl + qL

l=1
q

jœ�+ 1(j, l) · 1(k, l) · ŵl · H(sj ≠ sk)
rank(k) (B.8)

=
ÿ

kœ�+

qL
l=1 1(k, l) · ŵl + q

jœ�+
qL

l=1 1(j, l) · 1(k, l) · ŵl · H(sj ≠ sk)
rank(k) (B.9)

We define the following relevance function:

rel(k) =
Lÿ

l=1
1(k, l) · ŵl (B.10)

By construction of 1(·, l):

Lÿ

l=1
1(j, l) · 1(k, l) · ŵl = min(rel(k), rel(j)) (B.11)

Using the definition of the relevance function from Eq. (B.10) and Eq. (B.11), we can

rewrite Eq. (B.9) with H-rank:

�wAP =
ÿ

kœ�+

rel(k) + q
jœ�+ min(rel(j), rel(k)) · H(sj ≠ sk)

rank(k) (B.12)

=
ÿ

kœ�+

H-rank(k)
rank(k) (B.13)

Eq. (B.13) lacks the normalization constant
q

kœ�+ rel(k) in order to have the same shape
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as H-AP in Eq. (4.3). So we must prove that
q

kœ�+ rel(k) = 1:

ÿ

kœ�+
rel(k) =

ÿ

kœ�+

Lÿ

l=1
1(k, l) · ŵl (B.14)

=
Lÿ

l=1
|�(l)

|

lÿ

p=1
ŵp (B.15)

=
Lÿ

l=1
|�(l)

|

lÿ

p=1

wp

|�+,p|
(B.16)

=
Lÿ

l=1
|�(l)

|

lÿ

p=1

wp

|
tL

q=p �(q)|
(B.17)

=
Lÿ

l=1
|�(l)

|

lÿ

p=1

wp
qL

q=p |�(q)|
(B.18)

=
Lÿ

l=1

lÿ

p=1

|�(l)
| · wp

qL
q=p |�(q)|

(B.19)

=
Lÿ

p=1

Lÿ

l=p

|�(l)
| · wp

qL
q=p |�(q)|

(B.20)

=
Lÿ

p=1
wp ·

qL
l=p |�(l)

|
qL

q=p |�(q)|
(B.21)

=
Lÿ

p=1
wp = 1 (B.22)

We have proved that �wAP = H-AP with the relevance function of Eq. (B.10):

�wAP = 1
q

kœ�+ rel(k)
ÿ

kœ�+

H-rank(k)
rank(k) = H-AP (B.23)

Finally, we show, for an instance k œ �(l), :

rel(k) =
Lÿ

p=1
1(k, p) · ŵp =

lÿ

p=1
·ŵp =

lÿ

p=1

wp

|�+,p|
(B.24)

i.e. the relevance of Eq. (B.10) is the same as the relevance of Property 1. This concludes the

proof of Property 1. ⇤
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Appendix C

Supplementary material: Post-hoc
out-of-distribution detection

C.1 Energy-based models.

An energy-based model (EBM) is an unnormalized density model defined via its energy

function E◊ : Rm
æ R parameterized by a neural network with parameters ◊. For z œ Rm, its

probability density is given by the Boltzmann distribution

p◊(z) = 1
Z◊

exp (≠E◊(z)), (C.1)

where Z◊ is the partition function which is intractable in high dimension. We can train

EBMs via maximum likelihood estimation:

arg max
◊

log p◊(D) = arg min
◊

Ez≥pin [≠ log p◊(z)] (C.2)

which can be approximated via stochastic gradient descent :

◊i+1 = ◊i ≠ ⁄Ò◊(≠ log p◊i(z)) with z ≥ pin (C.3)

Interestingly, Ò◊(≠ log p◊i(z)) can be computed without computing the intractable normal-

ization constant Z◊.
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We have:

Ò◊(≠ log p◊(z)) = Ò◊E◊(z) + Ò◊ log Z◊

= Ò◊E◊(z) + 1
Z◊

Ò◊Z◊

= Ò◊E◊(z) + 1
Z◊

Ò◊

⁄

z
exp(≠E◊(z))dz

= Ò◊E◊(z) + 1
Z◊

⁄

z
Ò◊ exp(≠E◊(z))dz

= Ò◊E◊(z) +
⁄

z
≠Ò◊E◊(z)exp(≠E◊(z))

Z◊
dz

= Ò◊E◊(z) ≠ EzÕ≥p◊
[Ò◊E◊(zÕ)].

Therefore, training EBMs via maximum likelihood estimation (MLE) amounts to perform

stochastic gradient descent with the following loss:

LMLE = Ez≥pin

Ë
E◊(z)

È
≠ EzÕ≥p◊

Ë
E◊(zÕ)

È
. (C.4)

Intuitively, this loss amounts to diminishing the energy for samples from the true data

distribution p(x) and to increasing the energy for synthesized examples sampled according to

the current model. Eventually, the gradients of the energy function will be equivalent for

samples from the model and the true data distribution and the loss term will be zero.

The expectation EzÕ≥p◊

Ë
E◊(zÕ)

È
can be approximated through MCMC sampling, but we

need to sample z
Õ from the model, p◊, which is an unknown moving density. To estimate the

expectation under p◊ in the right hand-side of equation (C.4) we must sample according to

the energy-based model p◊. To generate synthesized examples from p◊, we can use gradient-

based MCMC sampling, such as Stochastic Gradient Langevin Dynamics (SGLD) [216] or

Hamiltonian Monte Carlo (HMC) [217]. In this work, we use SGLD sampling following [218],

[219]. In SGLD, initial features are sampled from a proposal distribution p0 and are updated

for T steps with the following iterative rule:

zt+1 = zt ≠
÷

2ÒzE
h
◊k

(zt) + Ô
÷ wt, with wt ≥ N (0, I) (C.5)

where ÷ is the step size. Therefore, sampling from p◊ does not require computing the normal-

ization constant Z◊.

Many variants of this training procedure have been proposed including Contrastive Diver-

gence (CD) [296] where p0 = pdata, or Persistent Contrastive Divergence (PCD) [297] which uses

a bu↵er to extend the length of the MCMC chains. We refer the reader to [298] for more details

on EBM training with MLE as well as other alternative training strategies (score-matching,

noise contrastive estimation, Stein discrepancy minimization, etc.).
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C.2 Experimental results

C.2.1 ViT results

In Tab. C.1 we compare HEAT using a Vision Transformer1 (ViT), on the ImageNet bench-

mark introduced in [211]. We show that on the aggregated results, HEAT outperforms the

previous best method, ViM [211], by -1.7 pts FPR95. Importantly, HEAT outperforms other

method on three datasets of the benchmark, i.e. OpenImage-O, Textures, ImageNet-O, and is

competitive on iNaturalist. Tab. C.1 demonstrates the ability of HEAT to adapt to architec-

tures of neural networks, i.e. Vision Transformer [46], other than the convolutional networks

(i.e. ResNet-34 & ResNet-50) tested in Sec. 5.3.2.

Table C.1: Results on Imagenet. All methods are based on an ImageNet pre-trained Vision
Transformer (ViT) model. ø indicates larger is better, and ¿ the opposite.

Method
OpenImage-O Textures iNaturalist Imagenet-O Average
FPR95¿ / AUC ø FPR95¿ / AUC ø FPR95¿ / AUC ø FPR95¿ / AUC ø FPR95¿ / AUC ø

MSP 34.2 / 92.5 48.6 / 87.1 19.0 / 96.1 64.8 / 81.9 41.7 / 89.4
EL 14.0 / 97.1 28.2 / 93.4 6.2 / 98.7 41.3 / 90.5 22.4 / 94.9
ODIN 15.7 / 96.9 30.6 / 93.0 6.6 / 98.6 44.2 / 89.9 24.3 / 94.6
MaxLogit 15.7 / 96.9 30.6 / 93.0 6.6 / 98.6 44.2 / 89.9 24.3 / 94.6
KL Matching 28.5 / 93.9 44.1 / 88.8 14.8 / 96.9 55.7 / 84.1 35.8 / 90.9
KNN 45.8 / 91.7 28.9 / 93.2 52.3 / 91.1 52.9 / 88.4 45.0 / 91.1
Residual 32.6 / 92.7 33.8 / 92.2 6.6 / 98.6 47.9 / 88.2 30.2 / 92.9
ReAct 13.5 / 97.4 28.5 / 93.3 4.3 / 99.0 42.6 / 90.7 22.2 / 95.1
Mahalanobis 13.5 / 97.5 25.2 / 94.2 2.1 / 99.5 37.0 / 92.8 19.5 / 96.0
ViM 12.6 / 97.6 20.3 / 95.3 2.6 / 99.4 36.8 / 92.6 18.1 / 96.2

HEAT 11.2 / 97.8 12.8 / 96.9 6.9 / 98.2 34.8 / 93.1 16.4 / 96.5

C.2.2 Model analysis

In Fig. C.1 we show the impact of ⁄ in Eq. (5.6) and — vs.FPR95 on CIFAR-100, we study

in Fig. C.2 how HEAT behaves on low data regimes with CIFAR-10 as ID dataset.

Robustness to ⁄ In Fig. C.1a we can see that we have similar trends to Fig. 5.3a. For values

of ⁄ too high, i.e. when the expressivity of the energy-based correction is limited, HEAT-GMM

1The model used can be found at https://github.com/haoqiwang/vim
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has the same performances as GMM. For values of ⁄ too low, the energy-based correction is

not controlled and disregards the prior scorer, i.e.GMM. Finally, for a wide range of ⁄ values,

HEAT-GMM improves the OOD detection performances of GMM.

Robustness to — In Fig. C.1b we show that HEAT is stable wrt. — on CIFAR-100 similarly

to Fig. 5.3b.

(a) ⁄ vs.FPR95¿ (b) — vs.FPR95¿

Figure C.1: On CIFAR-100 ID: (a) impact of
⁄ in Eq. (5.6) vs. FPR95 and (b) analysis of —

in Eq. (5.7) vs. FPR95.

Figure C.2: Impact on performances (AUCø

on CIFAR-10) vs. the number of training data
for GMM density, fully data-driven EBM, and
HEAT. Our hybrid approach maintains strong
performances in low-data regimes, in contrast
to the fully data-driven EBM.

Low data regime Similarly to Fig. 5.4, we can see that training solely an EBM is very unstable

when the number of data is low. On the other hand, HEAT-GMM is stable to the lack of data

and improves GMM even with few ID samples available.
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Résumé français.

A L’été de l’IA.

Ces dernières années, le domaine de l’intelligence artificielle (IA) a connu une transformation

remarquable, propulsée par le renouveau de l’apprentissage profond (DL) [1]. Il a révolutionné

de nombreux domaines. L’IA générative a rencontré un énorme succès avec les grands modèles

de langage (LLM), tels que ChatGPT 3 & 4 [2], [3] (Fig. C.3f), Llama 1 & 2 [4], [5], et la généra-

tion d’images, par exemple la génération de texte vers image avec Stable Di↵usion [6] (Fig. C.3e)

ou DALL-E [7]. Cela a changé notre manière de représenter le contenu multimédia, comme les

images avec DINOv2 [8], MAE [9], SAM [10] (Fig. C.3c), le son avec Whisper [11] (Fig. C.3b),

et plus récemment les données multimodales avec CLIP [12] (Fig. C.3a), ImageBind [13] et

Gemini [14]. Son application en apprentissage par renforcement a permis de mâıtriser le jeu de

Go avec AlphaGo [15], battant par la suite son champion du monde (Fig. C.3d), et a permis en

robotique de battre les champions de drones de course [16], ou pour la conduite autonome [17].

Ses applications sont diverses, et elle a été appliquée avec succès à la recherche en physique,

par exemple la prévision météorologique avec GraphCast [18] ou la stabilisation du plasma

dans la fusion nucléaire [19]. Elle a eu un impact considérable sur la biologie avec la sortie

d’AlphaFold [20], et est au cœur d’entreprises telles qu’Altos lab qui utilise l’IA pour raje-

unir les cellules avec la réaction de Shinya Yamanaka [21]. Un autre domaine prolifique est

l’application de l’IA à la médecine, par exemple la reconstruction plus rapide d’IRM [22], la

segmentation des organes sur des radios [23], ou la découverte de médicaments [24].

(d) Mastering the game of Go with AlphaGo

(a) The Vision Language model CLIP (b) Speech recognition with Whisper (c) Image segmentation with SAM

(e) Text to image generation with Stable Diffusion (f) The AI chatbot ChatGPT

The loch ness monster swimming in the Seine in Paris

Figure C.3: Exemples de recherches en apprentissage profond ayant un impact élevé sur la
communauté de l’IA et sur un large public. ChatGPT (f) a eu 1,7 milliard de visites en octobre
2023*.

* source : https://explodingtopics.com/blog/chatgpt-users
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Dans les principaux domaines de l’IA, tels que la vision par ordinateur, le traitement du

langage naturel ou la reconnaissance vocale, l’apprentissage profond est devenu le paradigme

dominant, voire le seul. Cette dominance de l’apprentissage profond découle de deux facteurs

majeurs : 1) la large disponibilité de grands ensembles de données tels que ImageNet [25],

COCO [26], ADE20K [27], le jeu de données Google Landmarks v2 [28] ou iNaturalist [29] et

ces dernières années la collecte de jeux de données massifs de plusieurs ordres de grandeurs plus

grands, tels que JFM [30] (privé), LAION-5B [31], LVD-142M [8]; 2) la quantité de calcul de

plus en plus importante disponible pour les laboratoires industriels et les chercheurs, avec une

recherche dédiée au développement des meilleures puces [32], [33]. Ces deux facteurs permettent

d’entrâıner des modèles plus grands, pendant plus longtemps et sur des données très diverses.

En augmentant continuellement la taille des ensembles de données et la puissance de calcul,

l’apprentissage profond entre dans l’ère des modèles de fondation [34]. Ces modèles qui ont été

entrâınés sur de grandes quantités de données, par exemple deux milliards de paires texte-image

pour OpenClip [35] ou deux trillions de tokens pour Llama 2 [5]. En raison de l’ampleur de

leur ensemble d’apprentissage, ces modèles sont dits ayant “vu le monde”, c’est-à-dire qu’ils ont

vu des données diverses et ont une compréhension globale du monde. Ces modèles généralistes

peuvent être utilisés de manière “zero-shot”, c’est-à-dire sans nécessiter d’entrâınement, sur un

large éventail de tâches. Ils sont conçus pour avoir une compréhension générale des données

sans être experts dans des tâches spécifiques. Ainsi, en raison de leur généralité, ils peuvent

sous-performer par rapport aux modèles experts sur des tâches ou des ensembles de données

spécifiques, par exemple CLIP dans la recherche d’images [36], ou SAM sur des images médi-

cales [37]. Bien que ces modèles soient censés être à la base de nombreux systèmes d’IA, les

adapter reste le moyen le plus e�cace pour des tâches spécifiques.

Vision par ordinateur moderne. En vision par ordinateur, l’utilisation de l’apprentissage

profond redéfinit la manière dont les images sont traitées et représentées. Les premières appli-

cations réussies de l’apprentissage profond en vision informatique étaient basées sur les réseaux

de neurones convolutifs modernes [40], avant de devenir la base de toutes les méthodes de vision

par ordinateur après leurs succès à grande échelle avec MCDNN [41] et le célèbre AlexNet [42]

qui a remporté le défi ILSVRC 2012 [43]. Les architectures ont ensuite évolué avec les bien

connus VGG [44] et ResNets [45]. Récemment, les transformers vision, ViTs [46], [47], ont

été développés en vision par ordinateur en adaptant le Transformer [48] issue du traitement du

langage naturel. Le succès de l’apprentissage profond en vision par ordinateur vient notamment

du fait qu’il apprend des représentations, les “embeddings” ou “deep features”, plutôt que de

s’appuyer sur des “features expertes” ingénierées telles que SIFT [49]. En e↵et, les features
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(a) Image tirée de [38]. Exemple de di↵érentes tâches de vision par ordinateur résolues à l’aide de
réseaux de neurones profonds.

What is the model of this vehicle?

Bugatti Veyron
The Bugatti Veyron EB 16.4 is a 
mid-engine sports car, designed 
and developed in Germany by 
the Volkswagen Group and …

What is this building called?

Skanderbeg Museum
The National History Museum "Gjergj 
Kastrioti Skënderbeu" (Albanian: 
Muzeu Historik Kombëtar ), also known 
as the Skanderbeg Museum…

What piece of equipment is placed 
on the animal in the image?Who manufactured the plane?

Bridle
A bridle is a piece of equipment used 
to direct a horse. As defined in the 
Oxford English Dictionary, the "bridle" 
includes both the headstall that…

Mcdonnell douglas 
McDonnell Douglas was a major 
American aerospace 
manufacturing corporation and 
defense contractor formed by …

Context Image

 Input
O

utput

Knowledge Base
(Wikipedia)

Text Query

Output Entity
(Wikipedia Entity)

OVEN Models

(b) Image tirée de [39]. Système de réponse à des questions visuelles basé sur la recherche d’images.

Figure C.4: Illustration des applications des DNN en vision par ordinateur.

expertes ont été conçues par les chercheurs en utilisant des notions de traitement du signal et

notre compréhension des aspects importants des images, par exemple les gradients de couleur.

Ces caractéristiques ingénierées saisissent principalement des indices de bas niveau, et elles peu-

vent donc manquer d’expressivité pour le contenu sémantique, tandis que les deep features sont

basées sur les données et peuvent représenter di↵érents niveaux d’abstraction pour s’attaquer

aux tâches à résoudre. Les embeddings sont des vecteurs de grande dimension qui peuvent

représenter des images complexes de manière compacte et permettent la comparaison à l’aide

d’outils simples tels que la distance euclidienne. Ces représentations complexes ont permis aux

systèmes d’apprentissage profond d’e↵ectuer de nombreuses tâches telles que la classification

d’images [44], [45], [50], la détection d’objets [51]–[53], la segmentation d’images [10], [54], [55],
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qui sont illustrées sur la Fig. C.4a, ou la réponse à des questions visuelles [39], [56], illustrée

sur la Fig. C.4b, etc.

B Contexte et motivations.

Cette thèse découle de la collaboration entre le Cnam et Coexya. Coexya2 est une entreprise

privée qui, entre autres, édite des solutions logicielles dédiées à la gestion de la propriété in-

tellectuelle (PI). Parmi celles-ci figure Acsepto3, une suite logicielle pour la recherche et la

surveillance de marques, utilisée dans 16 institutions de propriété intellectuelle dans le monde.

L’un des moteurs de recherche d’Acsepto est dédié à la recherche de logos de marques (TMs).

En e↵et, lorsqu’une personne, une organisation ou une entreprise souhaite protéger un logo de

marque, elle doit soumettre une demande de marque à l’o�ce de la PI du pays concerné, tel

que l’INPI4 en France, pour s’assurer que le TM candidat n’est pas similaire à un logo déjà

existant.

En raison de l’ampleur de leur base de données, par exemple 3.2 millions de TMs enregistrés

en France, les o�ces de la PI ont dû automatiser le processus de recherche. Ce processus de

recherche est illustré par la Fig. C.5. Étant donné un logo, appelé “requête”, qu’un demandeur

souhaiterait enregistrer, par exemple le logo ICML ici, Acsepto récupère une liste de logos dans

la base de données d’un client qui sont les plus similaires à la requête.

Requêter une base de données avec une image est une tâche de vision par ordinateur appelée

recherche d’images basée sur le contenu (CBIR). Le CBIR est basé sur la représentation d’image.

Cela consiste à construire des représentations d’images qui permettent leur comparaison. En ef-

fet, comparer deux images en fonction de leurs pixels bruts, par exemple en calculant la distance

L2 pixel à pixel, n’est pas précis et est très sensible aux petites variations d’une image. Cela

est illustré sur la Fig. C.6, en traduisant une image du jeu de données MNIST [57] de quelques

pixels, la distance L2 devient plus grande qu’avec une autre image complètement di↵érente. Ac-

septo était donc basé dans ses versions précédentes sur des représentations d’images ingéniérées;

sa version finale avant l’apprentissage profond était basée sur un mélange de plusieurs algo-

rithmes, comprenant la transformée de Fourier 2D [58], les polynômes de Zernike 2D [59], les

features HOG [60], les features SURF [61], les features FCTH [62] et un algorithme interne. Les

représentations issues de ces di↵érents algorithmes permettaient de se concentrer sur di↵érents

aspects des images, par exemple les formes ou les gradients de couleur.

2Site web de Coexya : https://www.coexya.eu/
3Description d’Acsepto : Fiches-produits-Acsepto.pdf
4Site web de l’INPI : https://www.inpi.fr/
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Query:

Top-24 retrieved images:

Figure C.5: Exemple d’une requête dans Acsepto avec le logo ICML. Contrairement au cadre de
recherche par images standard en milieu académique, pour la plupart des requêtes de logos, il
n’y a pas nécessairement de résultats positifs. Certains logos sont plus pertinents que d’autres.

Coexya a depuis adopté les embeddings suite à l’avènement de l’apprentissage profond

en vision par ordinateur. L’une des forces des DNN est qu’ils sont capables d’apprendre des

représentations des images basées sur les données : on dit que les DNN sont “data-driven”. Cela

permet de créer des espaces d’embeddings où les distances sont perceptuelles. Cela signifie que

deux images qui sont visuellement ou sémantiquement similaires seront proches dans le sens de

la distance euclidienne. Les premiers modèles profonds de Coexya reposent sur le fine-tuning

des DNN pré-entrâınés sur ImageNet, par exemple le ResNet-50 [45], sur leur base de données

interne annotées avec la classification de Vienne5, une classification multi-étiquettes standard-

isée des logos de marques établie par l’Organisation mondiale de la propriété intellectuelle6. Les

caractéristiques profondes extraites de ces DNN fine-tunés sont ensuite utilisées pour comparer

les logos de marque les uns avec les autres. Le fine-tuning est important, car il permet d’adapter

le modèle à un domaine di↵érent, par exemple les logos de marques pour Coexya. Il permet

également d’apprendre des représentations qui peuvent distinguer les di↵érences subtiles dans

les images, en e↵et les ensembles de données en recherche par images sont “fine-grained”, ce

qui n’est pas le cas pour les ensembles de données généralistes tels qu’ImageNet. Avec cette

5La classification de Vienne : https://www.wipo.int/classifications/vienna/en/index.html
6WIPO : https://www.wipo.int/portal/en/index.html
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Figure C.6: La distance L2 pixel à pixel entre une image et une version translatée d’elle-même
est plus grande qu’avec une autre image complètement di↵érente. Cela illustre la nécessité de
concevoir des représentations plus puissantes pour comparer des images.

collaboration, Coexya a cherché à améliorer leurs modèles utilisés dans leur logiciel Acsepto,

en améliorant leurs performances prédictives et en les rendant plus fiables.

Ce riche contexte nous amène à aborder la notion de robustesse des DNN selon trois per-

spectives di↵érentes :

1. Défi 1 : Robustesse en optimisation, où nous concevons une fonction de coût théorique-

ment justifiée, conduisant à de meilleures performances sur les métriques d’évaluation.

2. Défi 2 : Robustesse des classements, pour atténuer la sévérité des erreurs et garantir

l’alignement du classement avec les préférences humaines en s’appuyant sur des annota-

tions hiérarchiques.

3. Défi 3 : Robustesse des modèles, en détectant les images hors distribution en utilisant des

modèles “data-driven” pour estimer la densité des images d’entrâınement.

B.1 Défi 1 : Optimisation de métriques non lisses et non décomposables.

Pour apprendre des représentations, les DNN sont entrâınés sur un ensemble de données

en minimisant une fonction de coût. Les gradients sont calculés à partir des sorties des DNN.

En utilisant l’algorithme de rétro-propagation [63], un gradient est calculé pour chaque couche

du DNN. Les poids sont ensuite mis à jour en utilisant la descente de gradient stochastique

(SGD). Ce paradigme d’entrâınement repose sur des fonctions de coût qui sont di↵érentiables,

c’est-à-dire que le gradient de la fonction de coût par rapport à la sortie du DNN peut être

calculé et est informatif. Pour avoir un DNN qui est entrâıné pour une tâche spécifique, le

meilleur scénario est de pouvoir optimiser les métriques d’évaluation pendant l’entrâınement.

Par exemple, c’est possible pour les métriques de régression standard : l’erreur quadratique

moyenne (MSE). Cependant, pour plusieurs fonctions de coût, ce n’est pas possible, par exemple

pour la fonction de coût 0/1 utilisée en classification, illustrée en noir sur la Fig. C.7a. En e↵et,
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c’est une fonction en escalier et ses gradients sont soit nuls, soit indéfinis, ce qui les rend non

informatifs pour la SGD. Cela nécessite donc l’utilisation d’une fonction de coût de substitution

qui est di↵érentiable, comme la fonction de coût “Hinge”ou l’entropie croisée, qui est la fonction

de coût utilisée pour la classification en pratique. Ces fonctions de coût sont illustrées sur

la Fig. C.7a.

(a) Pour optimiser la fonction de coût 0/1 (en
bleu), une fonction de coût substitutive est néces-
saire, par exemple la fonction de coût logistique.*

(b) Les métriques d’évaluation de la recherche par
images, par exemple AP, ne sont pas décompos-
ables. La valeur AP moyenne estimée sur les lots
bleus est de 0.78, tandis que les valeurs globales
réelles en jaune sont de 0.68.

Figure C.7: La descente de gradient stochastique repose sur des fonctions de coût qui sont
di↵érentiables Fig. C.7a, et qui sont décomposables, ce qui n’est pas le cas pour AP Fig. C.7b.

*Image tirée de www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote10.html

Les systèmes de recherche par images sont évalués avec des métriques basées sur le classe-

ment, telles que la précision moyenne (AP), le rappel à k (R@k) ou le gain cumulatif décroissant

normalisé (NDCG). Ces métriques sont utilisées car la recherche par images est une tâche forte-

ment déséquilibrée, c’est-à-dire qu’il y a beaucoup plus de négatifs que de positifs. En e↵et,

étant donné une image requête, la plupart des images de la base de données seront non per-

tinentes. Par exemple, sur la Fig. C.4b, lors de la requête de l’image de l’avion, la plupart

des images dans la base de données ne sont pas un “McDonnell Douglas”, et sont donc non

pertinentes. Ces métriques sont basées sur la fonction de classement, qui peut être décrit avec

la fonction d’Heaviside, comme cela sera détaillé dans la Sec. 2.2. Comme elles sont basées

sur des fonctions d’Heaviside, ces métriques sou↵rent des mêmes problèmes que la fonction de

coût 0/1 : elles ne sont pas di↵érentiables, donc fine-tuner des modèles de recherche par images

nécessite la conception de fonction de coût de substitution. Ce problème a été longuement

étudié et a été abordé soit en utilisant des bornes supérieures grossières, par exemple la perte

fonction de coût contrastive [64], par triplet [65], par proxy [66] ou en utilisant des approx-
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imations du rang qui permettent une approximation fine des métriques cibles [67]–[70]. Par

exemple, Coexya s’est appuyé sur un entrâınement basé sur la classification qui ne correspond

pas aux métriques d’évaluation de la recherche d’images, ce qui conduit à des performances

sous-optimales. Concevoir des fonctions de coût de substitution qui approximent correctement

les métriques d’évaluation, tout en conservant d’importantes propriétés de robustesse telles que

les bornes supérieures, est un problème di�cile.

En outre, ces métriques sont “list-wise”, c’est-à-dire que la valeur de la métrique pour une

requête dépend d’autres exemples. Par conséquent, elles ne sont pas séparables linéairement

entre les exemples. Cela les rend “non décomposables”. Leurs valeurs estimées sur un sous-

ensemble ou des mini-batch de données sont biaisées. Cela est illustré sur la Fig. C.7b, où la

moyenne de l’AP sur chaque batch (de la deuxième à la dernière ligne) est supérieure à l’AP

global (première ligne). Comme mentionné précédemment, les DNN sont optimisés à l’aide de

SGD, qui est utilisée en pratique pour des raisons à la fois computationnelles et de performance.

D’autres fonctions de coût, par exemple l’entropie croisée, ne rencontrent pas ce problème et

peuvent être estimées à l’aide de mini-batch de données. La non-décomposabilité est également

un problème pour d’autres métriques, telles que le score de Dice [71], [72]. Bien que la non-

décomposabilité soit un problème connu, elle a été moins étudiée que le problème de la non-

di↵érentiabilité. Les approches qui abordent la non-décomposabilité sont moins courantes et

utilisent des méthodes ad hoc et brute force, par exemple en augmentant la taille des batchs au

détriment de l’e�cacité computationnelle dans [67] ou en stockant des batchs précédents [68],

[73].

B.2 Défi 2 : Fragilité des sorties des DNN et gravité des erreurs.

Alors que les DNN sont très puissants pour représenter des images et e↵ectuer des tâches

spécifiques, ils peuvent être étonnamment fragiles face à di↵érents facteurs et produisent des

sorties instables. Un aspect notoire de leur fragilité et de leur instabilité est les attaques adver-

saires [74], où la sortie des DNN peut changer radicalement tandis que l’entrée change légère-

ment. Une autre instabilité est que les DNN ont peu de contrôle sur la gravité des erreurs qu’ils

commettent en termes de compréhension humaine. Cela a été notamment observé dans [75],

où il est montré que, tandis que les performances prédictives d’AlexNet [42] à ResNet-50 [45]

ont évolué pour la classification sur ImageNet [43], la gravité des erreurs n’a pas diminué. Cela

peut s’expliquer en partie par l’apprentissage par “raccourcis” des DNN [76]. En e↵et, les DNN

tendent à apprendre des tâches en utilisant des raccourcis, par exemple en regardant l’arrière-

plan dans la classification d’images plutôt que l’objet principal. Cela peut impliquer qu’au lieu
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Query:

Brittle model
Severe mistake

Mistake aware model
Less severe

mistake

Figure C.8: Pour une requête, nous illustrons deux résultats. Le premier commet une erreur
plus grave que le second.

d’apprendre une sémantique des images à reconnâıtre, ils s’appuient sur des caractéristiques non

identifiables par les humains, ce qui peut conduire à des erreurs graves lorsqu’ils en commettent.

De même, les systèmes CBIR peuvent présenter des cas d’échec, où ils commettent des erreurs

graves lorsqu’ils récupèrent par erreur certains faux positifs. Cela est illustré sur la Fig. C.8,

où, étant donné un logo “Apple”, deux modèles peuvent commettre des erreurs plus ou moins

graves. Contrairement aux features ingéniérées utilisées pour représenter des images, telles que

SIFT [49], HOG [60] ou VLAD [77], les représentations des DNN manquent d’interprétabilité.

Ce problème rend la compréhension de ces instabilités plus di�cile à comprendre et à corriger

en pratique.

La définition de la gravité des erreurs est di�cile. Elle est liée aux préférences humaines et

à leur compréhension des tâches. Comme les “préférences humaines”sont di�ciles à définir en

pratique, un domaine de recherche intéressant utilise les relations hiérarchiques entre les éti-

quettes d’images comme proxy. Pour le célèbre jeu de données ImageNet, la gravité des erreurs

peut être déduite des relations hiérarchiques de la base de données syntaxique WordNet [78].

En recherche d’information, les chercheurs utilisent des “pertinences graduées”qui modélisent

l’importance des instances récupérées pour une requête donnée. Par la suite, ils les utilisent

dans des mesures graduées telles que le NDCG [79] ou une AP gradué [80]. De même, di↵érents

niveaux de pertinence peuvent être créés pour la recherche CBIR de logos de marque, comme

illustré sur la Fig. C.9, où pour une requête donnée, les logos récupérés peuvent être plus ou

moins pertinents. Cette tâche a également été abordée en utilisant des fonctions de coût de

substitution hiérarchiques dans [81], [82]. Réduire la gravité des erreurs est important pour les

moteurs de recherche, y compris le logiciel Acsepto de Coexya, afin de convaincre les utilisateurs

9
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Query:

Group 1 Group 2 Group 3 Group 4

Database samples

Figure C.9: Pour une requête donnée (e.g. le logo Apple), il existe plusieurs groupes plus ou
moins pertinents : anciens logos Apple, logos représentant des pommes, des fruits, et enfin des
logos n’ayant aucune similarité. Remarquez qu’Apple a engagé des poursuites pour des logos
dans les groupes 2 et 3*.

* sources : www.huffpost.com/entry/apple-sues-woolworths-ove_n_309450
www.techspot.com/news/99131-apple-wants-trademark-images-apples.html

www.wired.com/2008/10/apple-takes-on/

de les utiliser et de leur faire confiance.

B.3 Défi 3 : Détection des échantillons hors distribution.

Bien que les performances prédictives des DNN aient augmenté, comme discuté précédem-

ment, détecter quand les échantillons sont hors distribution (OOD) reste une tâche di�cile. La

tâche de détection d’OOD est une question di�cile et a été longuement étudiée. La détection

d’OOD est un autre défi important pour rendre les DNN plus robustes dans leurs prédictions.

Cela donne la capacité de détecter s’ils doivent traiter une image ou non. Dans les applications

critiques, il est important qu’un DNN sache quand il ne sait pas, par exemple pour des appli-

cations à la médecine, à la défense ou pour la conduite autonome, un système devrait rendre

le contrôle à un décideur humain s’il ne sait pas quelle action prendre. La détection d’OOD

est également une direction de recherche di�cile pour la CBIR. C’est par exemple intéressant

pour Coexya. En e↵et, un avantage industriel de Coexya est ses bases de données privées de

logos de marque. Pour rester compétitif, une direction pourrait être de scraper le web ou de

créer un sous-ensemble de très grands ensembles de données [31] pour constituer de nouveaux

ensembles d’entrâınement. Cela nécessite de pouvoir détecter si une image est un logo ou non.

Cela est illustré sur Fig. C.10, un modèle a été entrâıné sur l’ensemble d’entrâınement, et doit

détecter à l’inférence si une image est “in-distribution” (ID), i.e. elle provient de l’ensemble de
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test, ou “out-of-distribution”, i.e. c’est une donnée OOD.

ID training set ID test set OOD data

Figure C.10: Détection des logos de marque. Un modèle doit décider si les images sont “in-
distribution” (ID), e.g. du jeu de données METU [83], ou hors distribution (OOD), e.g. du jeu
de données ImageNet [43].

La di�culté de la détection OOD vient notamment de la surconfiance des modèles profonds.

Cela a été identifié notamment dans [84], où les auteurs montrent comment les modèles profonds

sou↵rent de surconfiance. Par exemple, en classification, cela signifie que les DNN donneront une

forte probabilité à une mauvaise classe. Cela rend les approches näıves, telles que la probabilité

softmax maximale (MSP) bien connue utilisée dans [85], échouent dans certains cas. En e↵et,

MSP utilise la probabilité maximale d’un DNN comme mesure de confiance, ce qui n’est pas

su�sant en pratique. Il y a eu plusieurs tentatives pour résoudre la détection d’OOD. Les

auteurs de [86], [87] ont essayé de renforcer la détection d’OOD en intégrant des échantillons

OOD dans l’ensemble d’entrâınement. D’autres méthodes reposent sur des autoencodeurs pour

accéder à une vraisemblance sur une image [88]. Les méthodes à l’état de l’art essaient d’estimer

la densité de l’ensemble d’entrâınement des DNN, par exemple [89] estime la densité ID en

utilisant un modèle de mélange gaussien ou, plus récemment, les auteurs de [90] estiment la

densité en utilisant la densité des k plus proches voisins. La disponibilité récente de gros modèles

“sur l’étagère” qui ont de fortes performances prédictives a conduit à changement de paradigme

dans la littérature sur la détection d’OOD. Ainsi, les méthodes récentes pour la détection d’OOD

suivent le paradigme post-hoc, où elles exploitent des réseaux neuronaux pré-entrâınés [89], [91],

[92].

C Résumé et contributions.

Dans cette thèse, nous abordons plusieurs aspects de la robustesse des réseaux de neurones

profonds. Plus précisément, nous introduisons une méthode pour l’optimisation robuste des

métriques de classement utilisées dans la recherche par images, en abordant à la fois les prob-
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lèmes de non-di↵érentiabilité et de non-décomposabilité (Chapter 3). Nous montrons qu’en

utilisant les relations hiérarchiques entre les étiquettes, nous pouvons entrâıner des réseaux de

neurones plus robustes par rapport à leurs erreurs dans Chapter 4. Nous examinons égale-

ment la robustesse post-hoc des DNN en ce qui concerne leurs performances de détection hors

distribution et comment les améliorer en utilisant des modèles basés énergie dans Chapter 5.

Plan. Nos contributions pour adresser les défis mentionnés ci-dessus sont les suivantes :

• Chapitre 3: Optimization of Ranking Losses for Image retrieval.

Dans ce chapitre, nous abordons les deux limitations de l’optimisation des métriques basées

sur le classement identifiées dans le Défi 1 : la non-di↵érentiabilité et la non-décomposabilité.

Nous définissons un nouveau cadre d’entrâınement qui aborde ces deux problèmes. Il utilise une

approximation de la fonction de classement, SupRank, pour fournir des fonctions de coût de

substitution lisses et qui sont des bornes supérieures. SupRank est une approximation précise

du classement et présente des propriétés mathématiques solides ainsi que des performances

expérimentales convaincantes. Nous montrons également les avantages théoriques que SupRank

présente par rapport aux approximations lisses de [69], [70]. Nous optimisons une deuxième

fonction de coût pendant l’entrâınement, afin de garantir la décomposabilité des fonctions de

coût basées sur le classement lors de l’entrâınement par mini-batchs. Celle-ci entrâıne un faible

surcoût computationnel et rend l’optimisation du classement réalisable avec de petits batchs.

Nous montrons dans une analyse théorique comment cet objectif supplémentaire aide à la

décomposabilité durant l’optimisation de fonction de coût de classement. Ce cadre est général

et peut être appliqué à de nombreuses fonctions de coût de classement. Dans ce premier

chapitre, nous nous concentrons sur le cadre standard de recherche par images et appliquons

ce cadre à deux métriques basées sur le classement : la précision moyenne (AP) et le rappel

à k (R@k) pour optimiser DNN pour la recherche par images. Nous montrons lors de vastes

validations expérimentales l’intérêt de notre cadre. Nous montrons d’abord qu’il se compare

favorablement à des méthodes récentes de la littérature qui optimisent des métriques basées

sur le classement. Nous montrons que notre cadre permet l’optimisation de métriques basées

sur le classement avec de petits batchs. Nous montrons ensuite que notre cadre est robuste

aux hyperparamètres. Enfin, nous comparons notre méthode à des méthodes de l’état de l’art

et montrons qu’elle surpasse la concurrence sur plusieurs ensembles de données, de petites

à grandes échelles, et validons notre méthode sur l’un des ensembles de données interne de

Coexya.
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• Chapitre 4: Hierarchical Image Retrieval for Robust Ranking.

Dans ce chapitre, nous remettons en question la définition de la similarité utilisée dans

la recherche par images afin de traiter la fragilité des DNN par rapport à la gravité de leurs

erreurs. Nous exposons les limitations de la similarité binaire communément utilisée dans

la recherche par images en examinant la robustesse du modèle lorsqu’il commet des erreurs.

Pour atténuer la gravité des erreurs, nous proposons d’utiliser des relations hiérarchiques entre

les étiquettes pour définir une définition plus riche de la similarité entre deux images. Pour

intégrer cette similarité lors de l’entrâınement et de l’évaluation, nous introduisons une exten-

sion de la précision moyenne (AP), la précision moyenne hiérarchique ou H-AP. Pour illustrer

l’intérêt d’utiliser des relations hiérarchiques, nous optimisons deux métriques hiérarchiques dif-

férentes en utilisant le cadre de Chapter 3: H-AP avec HAPPIER, et NDCG avec ROD-NDCG.

L’utilisation de ce cadre nous permet d’avoir un entrâınement plus robuste que les approxi-

mations utilisées en recherche d’informations [79], [80]. De plus, l’optimisation de métriques

d’évaluation conduit à de meilleures performances que d’autres fonctions de coût de substituts

utilisées en recherche par images hiérarchiques telles que [81], [82]. Nous discutons ensuite de

l’hypothèse d’accès à des étiquettes hiérarchiques. Nous montrons comment annoter en pra-

tique un ensemble de données de recherche par images avec des étiquettes hiérarchiques. Nous

utilisons un pipeline semi-automatique pour étendre un jeu de données bien connu de recherche

de landmarks, Google-Landmarks v2 [28] (GLDv2), avec des étiquettes hiérarchiques. Nous

montrons dans une validation expérimentale qu’à la fois HAPPIER et ROD-NDCG i) sont au

niveau des méthodes de l’état de l’art pour la recherche par images standard ii) surpassent

largement les méthodes de recherche par images standard sur les métriques hiérarchiques, iii)

surpassent d’autres méthodes hiérarchiques sur les métriques hiérarchiques et la recherche par

images standard. Nos résultats sont valables pour six ensembles de données hiérarchiques et

notre version hiérarchique de GLDv2. Nous montrons également l’intérêt de HAPPIER pour

la recherche de logos sur deux ensembles de données internes de Coexya. Nous menons des

études d’ablation de notre méthode pour montrer sa robustesse aux hyperparamètres. Enfin,

nous montrons qualitativement que HAPPIER crée un espace d’embeddings mieux organisé que

les méthodes non hiérarchiques, et montrons qualitativement la gravité moindre des erreurs de

HAPPIER vs. des méthodes non hiérarchiques.

• Chapitre 5: Post-hoc out-of-distribution detection.

Dans ce chapitre, nous étudions un autre aspect de la robustesse des DNN: la détection hors

distribution (OOD) post-hoc, comme décrit dans le Défi 3. Nous exploitons le cadre des modèles
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basés énergie (EBM) [93] pour introduire une nouvelle méthode de détection d’OOD post-hoc

: HEAT. HEAT est basé sur deux composantes : l’apprentissage résiduel et la composition des

fonctions d’énergie. Nous utilisons d’abord les EBM pour apprendre une fonction résiduelle

pour di↵érentes méthodes de la littérature sur la détection d’OOD. En e↵et, plusieurs méth-

odes de la littérature sont basées sur l’approximation de la densité de l’ensemble de données

d’entrâınement, par exemple [91] utilise un modèle de mélange gaussien pour approximer la

densité ID ou [94] utilise un score d’énergie dérivé des logits de sortie d’un DNN. Cependant, en

raison de leurs forts biais de modélisation, ces méthodes manquent d’expressivité pour approx-

imer correctement la distribution ID. Apprendre un terme résiduel avec un EBM permet plus

d’expressivité. Un autre aspect des di↵érents biais de modélisation de ces méthodes est qu’elles

sont capables de détecter di↵érents types d’échantillons OOD. Nous montrons qu’en utilisant la

composition de fonctions d’énergie, nous sommes en mesure de combiner e�cacement plusieurs

types de scorers corrigés pour améliorer les performances globales de détection d’OOD. Enfin,

HEAT est une méthode post-hoc, ce qui lui permet d’être utilisé sur pratiquement n’importe

quel modèle profond disponible sur étagère. Nous nous concentrons sur la classification d’images

car c’est un benchmark standard dans la littérature sur la détection d’OOD. Dans nos expéri-

ences, nous montrons comment les deux composantes de HEAT améliorent les performances de

détection d’OOD. Nous comparons HEAT aux méthodes post-hoc de détection d’OOD de l’état

de l’art sur deux benchmarks standard CIFAR-10 et CIFAR-100 et sur le grand jeu de don-

nées ImageNet. Nous montrons également que HEAT fonctionne avec plusieurs architectures, y

compris les CNN et les Vision Transformers. Enfin, nous montrons que HEAT est robuste aux

régimes de faibles données, et par rapport à ses hyperparamètres.
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Elias RAMZI
Robust image retrieval with deep

learning

Résumé : Cette thèse traite de la recherche par image robuste afin de rendre
les systèmes de recherche d’images profonds performants et fiables. Nous
commençons par discuter de l’écart entre leur entrâınement et leur évaluation.
Nous définissons ensuite une famille de fonction de coût, ROADMAP, qui sont
plus étroitement alignées sur les métriques d’évaluation. Puis, nous étudions la
gravité des erreurs commises par les systèmes de recherche d’images. Nous nous
appuyons sur les relations hiérarchiques entre les catégories pour modéliser la
gravité des erreurs. En se basant sur ROADMAP, nous optimisons une nouvelle
extension de la précision moyenne pour le contexte hiérarchique, H-AP avec
HAPPIER. Nous montrons ensuite quantitativement et qualitativement que
les modèles entrâınés avec HAPPIER sont plus robustes et commettent des
erreurs moins graves. Enfin, nous introduisons HEAT, une nouvelle méthode
post-hoc pour la détection d’exemples hors distribution (OOD). HEAT est
basée sur les modèles à énergies et s’appuie sur deux composants : un terme
résiduel pour corriger des détecteurs OOD antérieurs et une composition des
détecteurs corrigés afin d’exploiter leurs di↵érents biais de modélisation.

Mots clés : Deep learning, Computer vision, Image retrieval, Robustness.

Abstract : In this thesis, we discuss robust image retrieval, to make deep
image retrieval systems both performant and reliable. We first address the
discrepancy between the training objective of image retrieval systems and
how they are evaluated. We design a new training framework, ROADMAP,
that more closely aligns with the evaluation metrics. Then, we investigate the
severity of mistakes that image retrieval systems make. We rely on hierarchical
relations between categories to model mistake severity. Using the ROADMAP
framework, we optimize a novel extension of average precision to the hierarchi-
cal setting, H-AP with HAPPIER. We show quantitatively and qualitatively
that training with HAPPIER leads to more robust models with less severe
mistakes. Finally, we address out-of-distribution (OOD) detection, a task where
models must recognize if inputs relate to what they were trained for. We
introduce a new post-hoc method, HEAT, that is based on energy-based mod-
els. It has two components: a residual term to correct prior OOD detectors,
and a composition of corrected priors to leverage their di↵erent modeling biases.

Keywords: Deep learning, Computer vision, Image retrieval, Robustness.
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